




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
不等式得性质:二.不等式大小比较得常用方法:1.作差:作差后通过分解因式、配方等手段判断差得符号得出结果;2.作商(常用于分数指数幂得代数式);3.分析法;4.平方法;5.分子(或分母)有理化;6.利用函数得单调性;7.寻找中间量或放缩法;8.图象法。其中比较法(作差、作商)就是最基本得方法。三.重要不等式1、(1)若,则(2)若,则(当且仅当时取“=”)2、(1)若,则(2)若,则(当且仅当时取“=”)(3)若,则(当且仅当时取“=”)3、若,则(当且仅当时取“=”);若,则(当且仅当时取“=”)若,则(当且仅当时取“=”)4、若,则(当且仅当时取“=”)注:(1)当两个正数得积为定植时,可以求它们得与得最小值,当两个正数得与为定植时,可以求它们得积得最小值,正所谓“积定与最小,与定积最大”.(2)求最值得条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量得取值范围、证明不等式、解决实际问题方面有广泛得应用.EQ\F(2ab,a+b)≤EQ\R(ab)≤EQ\F(a+b,2)≤EQ\R(EQ\F(a2+b2,2))应用一:求最值例1:求下列函数得值域(1)y=3x2+eq\f(1,2x2)(2)y=x+eq\f(1,x)解题技巧:技巧一:凑项例1:已知,求函数得最大值。评注:本题需要调整项得符号,又要配凑项得系数,使其积为定值。技巧二:凑系数例1、当时,求得最大值。技巧三:分离例3、求得值域。技巧四:换元解析二:本题瞧似无法运用基本不等式,可先换元,令t=x+1,化简原式在分离求最值。当,即t=时,(当t=2即x=1时取“=”号)。技巧五:注意:在应用最值定理求最值时,若遇等号取不到得情况,应结合函数得单调性。例:求函数得值域。解:令,则因,但解得不在区间,故等号不成立,考虑单调性。因为在区间单调递增,所以在其子区间为单调递增函数,故。所以,所求函数得值域为。2.已知,求函数得最大值、;3.,求函数得最大值、条件求最值1、若实数满足,则得最小值就是、分析:“与”到“积”就是一个缩小得过程,而且定值,因此考虑利用均值定理求最小值,解:都就是正数,≥当时等号成立,由及得即当时,得最小值就是6.变式:若,求得最小值、并求x,y得值技巧六:整体代换:多次连用最值定理求最值时,要注意取等号得条件得一致性,否则就会出错。。2:已知,且,求得最小值。应用二:利用基本不等式证明不等式1.已知为两两不相等得实数,求证:1)正数a,b,c满足a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc例6:已知a、b、c,且。求证:分析:不等式右边数字8,使我们联想到左边因式分别使用基本不等式可得三个“2”连乘,又,可由此变形入手。解:a、b、c,。。同理,。上述三个不等式两边均为正,分别相乘,得。当且仅当时取等号。应用三:基本不等式与恒成立问题例:已知且,求使不等式恒成立得实数得取值范围。解:令,。,应用四:均值定理在比较大小中得应用:例:若,则得大小关系就是、分析:∵∴(∴R>Q四.不等式得解法、1、一元一次不等式得解法。2、一元二次不等式得解法3、简单得一元高次不等式得解法:标根法:其步骤就是:(1)分解成若干个一次因式得积,并使每一个因式中最高次项得系数为正;(2)将每一个一次因式得根标在数轴上,从最大根得右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现得符号变化规律,写出不等式得解集。如(1)解不等式。(答:或);(2)不等式得解集就是____(答:或);(3)设函数、得定义域都就是R,且得解集为,得解集为,则不等式得解集为______(答:);(4)要使满足关于得不等式(解集非空)得每一个得值至少满足不等式中得一个,则实数得取值范围就是______、(答:)4.分式不等式得解法:分式不等式得一般解题思路就是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项得系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。如(1)解不等式(答:);(2)关于得不等式得解集为,则关于得不等式得解集为____________(答:)、5、指数与对数不等式。6.绝对值不等式得解法:(1)含绝对值得不等式|x|<a与|x|>a得解集(2)|ax+b|≤c(c>0)与|ax+b|≥c(c>0)型不等式得解法①|ax+b|≤c-c≤ax+b≤c;②|ax+b|≥cax+b≥c或ax+b≤-c、(3)|x-a|+|x-b|≥c(c>0)与|x-a|+|x-b|≤c(c>0)型不等式得解法方法一:利用绝对值不等式得几何意义求解,体现了数形结合得思想;方法二:利用“零点分段法”求解,体现了分类讨论得思想;方法三:通过构造函数,利

和蔼****娘子
实名认证
内容提供者


最近下载