

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
1圆柱的体积教学目标:1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。2.经历“类比猜想—验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。教学分析与教学建议1.学情分析在学习长方体和正方体的体积时,学生已经初步理解了体积和容积的含义,掌握了长方体和正方体的体积计算方法,这些知识都是学习圆柱体积的基础,特别是长方体和正方体的体积计算公式“底面积×高”对探索圆柱的体积计算方法有正迁移作用。2.教材分析教材重视类比、转化思想的渗透,引导学生经历“类比猜想—验证说明”的探索过程,掌握圆柱体积的计算方法,并感悟直柱体体积的一般计算方法。类比也是一种合情推理的方式,运用归纳、类比可以帮助人们猜想出结论。由于圆柱和长方体都是直柱体,长方体的体积可以用“底面积×高”计算,因而类比猜想圆柱的体积也可以用“底面积×高”计算。当然,通过合情推理得到的猜想还需要进一步证明。在小学阶段不要求给出严格的证明,学生只要能够从不同角度说明其合理性即可,也就是验证说明。教材先创设了两个简单的情境,第一幅图是圆柱形柱子的体积,第二幅图是圆柱形杯子的容积,引导学生结合情境来体会圆柱的体积或容积的实际含义,并提出“怎样计算圆柱的体积”的问题。接着,教材安排了探索圆柱体积计算方法的内容,引导学生经历“类比猜想—验证说明”的探索过程,体会类比、转化等数学思想方法。教材先呈现了“类比猜想”的过程,由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算方法也可能是“底面积×高”。在形成猜想后,教材又引导学生“验证说明”自己的猜想,教材中呈现了两种“验证说明”的方法:一种是用硬币堆成一堆,用堆的过程来说明“底面积×高”计算圆柱体积的道理,这实际上是“积分”思想的渗透;另一种方法是转化思想的渗透,即把圆柱通过“切、拼”转化为长方体,再根据长方体体积的计算方法推导出圆柱体积的计算方法。学生还可能有别的方法,只要合理教师就应给予肯定。3.教学建议教学时,教师首先要引导学生提出猜想,如果学生能提出“底面积×高”的猜想,教师要适当引导学生说说这样猜想的依据,使学生体会类比思想,如果学生提出猜想有困难,教师可以适当提示。第二步,组织学生进行“验证说明”,可以用小组合作的形式讨论。教材中的第一种方法学生不一定会出现,教师可以通过演示让学生有所感受。教学的重点可以放在第二种方法上,这种方法渗透了“把未知的问题转化为已知问题”的转化的思想方法,与“圆的面积”计算方法的推导过程类似。如有条件,应让每个学生用学具进行操作,如没有学具教师可以通过操作演示,力求展示整个变化过程,使学生认识到:把圆柱平均分成若干份切开,可以拼成近似的长方体,这样“化曲为直”,圆柱的体积就转化为长方体的体积,分的份数越多,拼起来就越接近长方体,渗透“极限”的思想。再引导学生分析拼成的近似长方体与原来的圆柱的关系,推导圆柱体积的计算方法。最后,教师除了总结知识外,还应引导学生对学习过程及数学思想方法进行总结。

论文****可爱
实名认证
内容提供者


最近下载
最新上传
浙江省宁波市2024-2025学年高三下学期4月高考模拟考试语文试题及参考答案.docx
汤成难《漂浮于万有引力中的房屋》阅读答案.docx
四川省达州市普通高中2025届第二次诊断性检测语文试卷及参考答案.docx
山西省吕梁市2025年高三下学期第二次模拟考试语文试题及参考答案.docx
山西省部分学校2024-2025学年高二下学期3月月考语文试题及参考答案.docx
山西省2025年届高考考前适应性测试(冲刺卷)语文试卷及参考答案.docx
全国各地市语文中考真题名著阅读分类汇编.docx
七年级历史下册易混易错84条.docx
湖北省2024-2025学年高一下学期4月期中联考语文试题及参考答案.docx
黑龙江省大庆市2025届高三第三次教学质量检测语文试卷及参考答案.docx