




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
数值分析报告班级:专业:流水号:学号:姓名:常用的插值方法序言在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……xn处的值是f(x0),……f(xn),要求估算f(x)在[a,b〕中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0,C1,……Cn的函数类Φ(C0,C1,……Cn)中求出满足条件P(xi)=f(xi)(i=0,1,……n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x0,x1,……xn称为插值结(节)点,Φ(C0,C1,……Cn)称为插值函数类,上面等式称为插值条件,Φ(C0,……Cn)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit插值,分段插值和样条插值。一.拉格朗日插值1.问题提出:已知函数在n+1个点上的函数值,求任意一点的函数值。说明:函数可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值。2.解决方法:构造一个n次代数多项式函数来替代未知(或复杂)函数,则用作为函数值的近似值。设,构造即是确定n+1个多项式的系数。3.构造的依据:当多项式函数也同时过已知的n+1个点时,我们可以认为多项式函数逼近于原来的函数。根据这个条件,可以写出非齐次线性方程组:其系数矩阵的行列式D为范德萌行列式:故当n+1个点的横坐标各不相同时,方程组系数矩阵的行列式D不等于零,故方程组有唯一解。即有以下结论。结论:当已知的n+1个点的横坐标各不相同时,则总能够构造唯一的n次多项式函数,使也过这n+1个点。4.几何意义5.举例:已知函数,求。分析:本题理解为,已知“复杂”函数,当x=81,100,121,144时,其对应的函数值为:y=9,10,11,12,当x=115时,求函数值。解:(1)线性插值:过已知的(100,10)和(121,11)两个点,构造1次多项式函数,于是有则。(2)抛物插值:构造2次多项式函数,使得它过已知的(100,10)、(121,11)和(144,12)三个点。于是有2次拉格朗日插值多项式:则有10.722755505364206.拉格朗日n次插值多项式公式:其中称为基函数(k=0,1,….,n),每一个基函数都是关于x的n次多项式,其表达式为:拉格朗日公式特点:1.把每一点的纵坐标单独组成一项;2.每一项中的分子是关于x的n次多项式,分母是一个常数;3.每一项的分子和分母的形式非常相似,不同的是:分子是,而分母是7.误差分析(拉格朗日余项定理),其中在所界定的范围内。针对以上例题的线性插值,有函数在[100,115]区间绝对值的极大值为,则有:于是近似值有三位有效数字。针对以上例题的抛物线插值,有函数在[100,115]区间绝对值的极大值为,则有于是近似值10.72275550536420有四位有效数字。8.拉格朗日插值公式的优点公式有较强的规律性,容易编写程序利用计算机进行数值计算。9.拉格朗日插值通用程序程序流程图如下:文件lagrange.m如下:%拉格朗日插值closealln=input('已知的坐标点数n=?');x=input('x1,x2,...,xn=?');y=input('y1,y2,...,yn=?');xx=input('插值点=?');symst%定义t为符号量p=0;fork=1:nl=1;forj=1:k-1l=l*(t-x(j))/(x(k)-x(j));endforj=k+1:nl=l*(t-x(j))/(x(k)-x(j));endp=p+l*y(k);endp=inline(p);%把符号算式p变为函数形式fplot(p,[min(min(x),xx)-1,max(max(x),xx)+1]);%画多项式函数holdonp(xx)%显示插值点plot(x,y,'o',xx,p(xx),'*');%画已知点和插值点在MATLAB命令窗口输入:lagrange然后有以下对话过程和结果,已知的坐标点数n=?6x1,x2,...,xn=?[1,3

赫赫****等你
实名认证
内容提供者


最近下载
最新上传
浙江省宁波市2024-2025学年高三下学期4月高考模拟考试语文试题及参考答案.docx
汤成难《漂浮于万有引力中的房屋》阅读答案.docx
四川省达州市普通高中2025届第二次诊断性检测语文试卷及参考答案.docx
山西省吕梁市2025年高三下学期第二次模拟考试语文试题及参考答案.docx
山西省部分学校2024-2025学年高二下学期3月月考语文试题及参考答案.docx
山西省2025年届高考考前适应性测试(冲刺卷)语文试卷及参考答案.docx
全国各地市语文中考真题名著阅读分类汇编.docx
七年级历史下册易混易错84条.docx
湖北省2024-2025学年高一下学期4月期中联考语文试题及参考答案.docx
黑龙江省大庆市2025届高三第三次教学质量检测语文试卷及参考答案.docx