



如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
因动点产生的相切问题建和初中姚雅娟例12012年河北省中考第25题如图1,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD//AB,∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.图1答案(1)点C的坐标为(0,3).(2)如图2,当P在B的右侧,∠BCP=15°时,∠PCO=30°,;如图3,当P在B的左侧,∠BCP=15°时,∠CPO=30°,.图2图3(3)如图4,当⊙P与直线BC相切时,t=1;如图5,当⊙P与直线DC相切时,t=4;如图6,当⊙P与直线AD相切时,t=5.6.图4图5图6例22012年无锡市中考模拟第28题如图1,菱形ABCD的边长为2厘米,∠DAB=60°.点P从A出发,以每秒厘米的速度沿AC向C作匀速运动;与此同时,点Q也从点A出发,以每秒1厘米的速度沿射线作匀速运动.当点P到达点C时,P、Q都停止运动.设点P运动的时间为t秒.(1)当P异于A、C时,请说明PQ//BC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?图一答案(1)因为,,所以.因此PQ//BC.(2)如图2,由PQ=PH=,得.解得.如图3,由PQ=PB,得等边三角形PBQ.所以Q是AB的中点,t=1.如图4,由PQ=PC,得.解得.如图5,当P、C重合时,t=2.因此,当或1<t≤或t=2时,⊙P与边BC有1个公共点.当<t≤1时,⊙P与边BC有2个公共点.图2图3图4图51.8因动点产生的线段和差问题例12012年滨州市中考第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4)、O(0,0)、B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.图1答案(1)。(2)AM+OM的最小值为.图2图3例22012年山西省中考第26题如图1,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标.图1思路点拨1.第(2)题探究平行四边形,按照AP为边或者对角线分两种情况讨论.2.第(3)题是典型的“牛喝水”问题,构造点B关于“河流”AC的对称点B′,那么M落在B′D上时,MB+MD最小,△MBD的周长最小.满分解答(1)由y=-x2+2x+3=-(x+1)(x-3)=-(x-1)2+4,得A(-1,0)、B(3,0)、C(0,3)、D(1,4).直线AC的解析式是y=3x+3.(2)Q1(2,3),Q2(),Q3().(3)设点B关于直线AC的对称点为B′,联结BB′交AC于F.联结B′D,B′D与交AC的交点就是要探求的点M.作B′E⊥x轴于E,那么△BB′E∽△BAF∽△CAO.在Rt△BAF中,,AB=4,所以.在Rt△BB′E中,,,所以,.所以.所以点B′的坐标为.因为点M在直线y=3x+3上,设点M的坐标为(x,3x+3).由,得.所以.解得.所以点M的坐标为.图2图3考点伸展第(2)题的解题思路是这样的:①如图4,当AP是平行四边形的边时,CQ//AP,所以点C、Q关于抛物线的对称轴对称,点Q的坐标为(2,3).②如图5,当AP是平行四边形的对角线时,点C、Q分居x轴两侧,C、Q到x轴的距离相等.解方程-x2+2x+3=-3,得.所以点Q的坐标为()或().图4图5

sy****28
实名认证
内容提供者


最近下载