




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第七节最大面积是多少(1)设矩形的一边AB=xm,那么AD边的长度如何表示?(2)设矩形的面积为ym2,当x取何值时,y的值最大?最大值是多少?(1)设矩形的一边AB=xm,那么AD边的长度如何表示?(2)设矩形的面积为ym2,当x取何值时,y的值最大?最大值是多少?(1)如果设矩形的一边AD=xcm,那么AB边的长度如何表示?(2)设矩形的面积为ym2,当x取何值时,y的值最大?最大值是多少?(1)设矩形的一边BC=xm,那么AB边的长度如何表示?(2)设矩形的面积为ym2,当x取何值时,y的值最大?最大值是多少?何时窗户通过的光线最多1.理解问题;用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?正方形ABCD边长5cm,等腰三角形PQR中,PQ=PR=5cm,QR=8cm,点D、C、Q、R在同一直线l上,当C、Q两点重合时,等腰△PQR以1cm/s的速度沿直线l向左方向开始匀速运动,ts后正方形与等腰三角形重合部分面积为Scm2,解答下列问题:(1)当t=3s时,求S的值;(2)当t=3s时,求S的值;(3)当5s≤t≤8s时,求S与t的函数关系式,并求S的最大值。本节课我们进一步学习了用二次函数知识解决最大面积问题,增强了应用数学知识的意识,获得了利用数学方法解决实际问题的经验,并进一步感受了数学建模思想和数学知识的应用价值.课后作业

ys****39
实名认证
内容提供者


最近下载