人教版九年级数学下册竞赛专题练习卷(共30个专题).doc 立即下载
2024-06-30
约7万字
约198页
0
5.2MB
举报 版权申诉
预览加载中,请您耐心等待几秒...

人教版九年级数学下册竞赛专题练习卷(共30个专题).doc

人教版九年级数学下册竞赛专题练习卷(共30个专题).doc

预览

免费试读已结束,剩余 193 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】专题01二次根式的化简与求值阅读与思考二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧.有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是:1、直接代入直接将已知条件代入待化简求值的式子.2、变形代入适当地变条件、适当地变结论,同时变条件与结论,再代入求值.数学思想:数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展.想一想:若(其中x,y,n都是正整数),则都是同类二次根式,为什么?例题与求解【例1】当时,代数式的值是()A、0B、-1C、1D、(绍兴市竞赛试题)【例2】化简(1)(黄冈市中考试题)(五城市联赛试题)(3)(北京市竞赛试题)(4)(陕西省竞赛试题)解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解.思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度.【例3】比大的最小整数是多少?(西安交大少年班入学试题)解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设想一想:设求的值.(“祖冲之杯”邀请赛试题)形如:的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.【例4】设实数x,y满足,求x+y的值.(“宗泸杯”竞赛试题)解题思路:从化简条件等式入手,而化简的基本方法是有理化.【例5】(1)代数式的最小值.(2)求代数式的最小值.(“希望杯”邀请赛试题)解题思路:对于(1),目前运用代数的方法很难求此式的最小值,的几何意义是直角边为a,b的直角三角形的斜边长,从构造几何图形入手,对于(2),设,设A(x,0),B(4,5),C(2,3)相当于求AB+AC的最小值,以下可用对称分析法解决.方法精髓:解决根式问题的基本思路是有理化,有理化的主要途径是乘方、配方、换元和乘有理化因式.【例6】设,求的值.解题思路:配方法是化简复合二次根式的常用方法,配方后再考虑用换元法求对应式子的值.能力训练A级1.化简:(“希望杯”邀请赛试题)2.若,则=_____(北京市竞赛试题)计算:(“希望杯”邀请赛试题)4.若满足0<x<y及的不同整数对(x,y)是_______(上海市竞赛试题)5.如果式子化简结果为2x-3,则x的取值范围是()A.x≤1B.x≥2C.1≤x≤2D.x>06、计算的值为()A.1B.C.D.5(全国初中数学联赛试题)7.a,b,c为有理数,且等式成立,则2a+999b+1001c的值是()A.1999B.2000C.2001D.不能确定(全国初中数学联赛试题)8、有下列三个命题甲:若α,β是不相等的无理数,则是无理数;乙:若α,β是不相等的无理数,则是无理数;丙:若α,β是不相等的无理数,则是无理数;其中正确命题的个数是()A.0个B.1个C.2个D.3个(全国初中数学联赛试题)9、化简:(1)(2)(3)(4)(天津市竞赛试题)(5)(“希望杯”邀请赛试题)10、设,求代数式的值.(“希望杯”邀请赛试题)11、已知,求x的值.设(n为自然数),当n为何值,代数式的值为1985?B级1.已知.(四川省竞赛试题)2.已知实数x,y满足,则=____(全国初中数学联赛试题)3.已知.(重庆市竞赛试题)4.那么=_____.(全国初中数学联赛试题)5.a,b为有理数,且满足等式则a+b=()A.2B.4C.6D.8(全国初中数学联赛试题)6.已知,那么a,b,c的大小关系是()B.b<a<cC.c<b<cD.c<a<b(全国初中数学联赛试题)7.已知,则的值是()A.B.C.D.不能确定8.若[a]表示实数a的整数部分,则等于()A.1B.2C.3D.4(陕西省竞赛试题)9.把中根号外的因式移到根号内,则原式应等于()A.B.C.D.(武汉市调考题)10、化简:(1)(“希望杯”邀请赛试题)(2)(新加坡中学生竞赛试题)(3)(山东省竞赛试题)(4)(太原市竞赛试题)11、设求证.(“五羊杯”竞赛试题)12、求的最大值.13、已知a,b,c为正整数,且为有理数,证明:为整数.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】专题02从求
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

人教版九年级数学下册竞赛专题练习卷(共30个专题)

文档大小:5.2MB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用