您所在位置: 网站首页 / 立体几何中三角形的四心问题.doc / 文档详情
立体几何中三角形的四心问题.doc 立即下载
2024-08-16
约3.8千字
约6页
0
234KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

立体几何中三角形的四心问题.doc

立体几何中三角形的四心问题.doc

预览

免费试读已结束,剩余 1 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

立体几何中三角形的四心问题
外心问题(若PA=PB=PC,则O为三角形ABC的外心)
例1.设P是ΔABC所在平面α外一点,若PA,PB,PC与平面α所成的角都相等,那么P在平面α内的射影是ΔABC的()
A.内心B.外心C.垂心D.重心
如图所示,作PO⊥平面α于O,连OA、OB、OC,那么∠PAO、∠PBO、∠PCO分别是PA、PB、PC与平面α所成的角,且已知它们都相等.
∴RtΔPAO≌RtΔPBO≌RtΔPCO.∴OA=OB=OC∴应选B.
例2.Rt△ABC中,∠C=90°,BC=36,若平面ABC外一点P与平面A,B,C三点等距离,且P到平面ABC的距离为80,M为AC的中点.(1)求证:PM⊥AC;(2)求P到直线AC的距离;(3)求PM与平面ABC所成角的正切值.
解析:点P到△ABC的三个顶点等距离,则P在平面ABC内的射影为△ABC的外心,而△ABC为直角三角形,其外心为斜边的中点.
证明(1)∵PA=PC,M是AC中点,∴PM⊥AC
解(2)∵BC=36,∴MH=18,又PH=80,
∴PM=,即P到直线AC的距离为82;
(3)∵PM=PB=PC,∴P在平面ABC内的射线为△ABC的外心,
∵∠C=90°∴P在平面ABC内的射线为AB的中点H。
∵PH⊥平面ABC,∴HM为PM在平面ABC上的射影,
则∠PMH为PM与平面ABC所成的角,∴tan∠PMH=
例3.斜三棱柱ABC—A1B1C1的底面△ABC中,AB=AC=10,BC=12,A1到A、B、C三点的距离都相等,且AA1=13,求斜三棱柱的侧面积。
解析:∵A1A=A1B=A1C
∴点A1在平面ABC上的射影为△ABC的外心,在∠BAC平分线AD上
∵AB=AC∴AD⊥BC
∵AD为A1A在平面ABC上的射影
∴BC⊥AA1∴BC⊥BB1
∴BB1C1C为矩形,S=BB1×BC=156
取AB中点E,连A1E
∵A1A=A1B∴A1E⊥AB
∴∴
∴S侧=396
二、内心问题(若P点到三边AB,BC,CA的距离相等,则O是三角形ABC的内心)
例4.如果三棱锥S—ABC的底面是不等边三角形,侧面与底面所成的角都相等,且顶点S在底面的射影O在ΔABC内,那么O是ΔABC的()
A.垂心B.重心C.外心D.内心
解(1)利用三垂线定理和三角形全等可证明O到ΔABC的三边的距离相等,因而O是ΔABC的内心,因此选D.
说明三角形的内心、外心、垂心、旁心、重心,它们的定义和性质必须掌握.
A
B
D
C
P
H
F
M
G
N
图2-24
三.重心问题(若PA垂直PB,PB垂直PC,PC垂直PA,则O是三角形ABC的重心)
例6.如图2-24:B为ACD所在平面外一点,M、N、G分别为ABC、ABD、BCD的重心,(1)求证:平面MNG//平面ACD;(2)求
解析:(1)要证明平面MNG//平面ACD,由于M、N、G分别为△ABC、△ABD、△BCD的重心,因此可想到利用重心的性质找出与平面平行的直线。
证明:连结BM、BN、BG并延长交AC、AD、CD分别于P、F、H。∵M、N、G分别为△ABC、△ABD、△BCD的重心,则有:连结PF、FH、PH有MN∥PF,又PF平面ACD,∴MN∥平面ACD。同理:MG∥平面ACD,MG∩MN=M,∴平面MNG∥平面ACD
(2)分析:因为△MNG所在的平面与△ACD所在的平面相互平行,因此,求两三角形的面积之比,实则求这两个三角形的对应边之比。解:由(1)可知,∴MG=PH,又PH=AD,∴MG=AD同理:NG=AC,MN=CD,∴MNG∽ACD,其相似比为1:3,∴=1:9
点评:立体几何问题,一般都是化成平面几何问题,所以要重视平面几何。比如重心定理,三角形的三边中线交点叫做三角形有重心,到顶点的距离等于它到对边中点距离的2倍。
例7.如图9-26,P为△ABC所在平面外一点,点M、N分别是△PAB和△PBC的重心.求证:MN∥平面ABC.(三角形的三条中线交于一点,称为重心,重心到一个顶点的距离是该点到对边中点距离的2倍)
解析:如图9-16,连结PM并延长交AB于D,连结PN并延长交BC于E,连结DE.在ΔPAB中,∵M是ΔPAB的重心,∴,同理在△PBC中有,在△PDE中,∵,∴MN∥DE,∵MN平面ABC,DE平面ABC,∴MN∥平面ABC.

例9.如图,在三棱锥S—ABC中,A1、B1、C1分别是ΔSBC、ΔSCA、ΔSAB的重心,(1)求证:平面A1B1C1∥平面ABC;(2)求三棱锥S—A1B1C1与S—ABC体积之比.

解析:本题显然应由三角形重心的性质,结合成比例线段的关系推导出“线线平行”再到“线面平行”到“面面平行”,至于体积的比的计算只要能求出相似三角形面积的比和对应高的
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

立体几何中三角形的四心问题

文档大小:234KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用