您所在位置: 网站首页 / 神经网络和数据融合培训课件.ppt / 文档详情
神经网络和数据融合培训课件.ppt 立即下载
2024-09-10
约5.8千字
约51页
0
429KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

神经网络和数据融合培训课件.ppt

神经网络和数据融合培训课件.ppt

预览

免费试读已结束,剩余 46 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

神经网络和数据融合知识基础

1、激励函数(阶跃函数、非线性函数、
连续函数、单调函数)、函数收敛
2、偏微分、梯度、方差与均方差
3、向量与矩阵
4、最优解与解空间
5、Matlab使用
6、人工智能基础1、萌芽期
40年代初,美国McCulloch和Pitts从信息处理的角度,研究神经细胞行为的数学模型表达.提出了阈值加权和模型—MP模型。

1949年,心理学家Hebb提出著名的Hebb学习规则,即由神经元之间结合强度的改变来实现神经学习的方法。Hebb学习规的基本思想至今在神经网络的研究中仍发挥着重要作用。50年代末期,Rosenblatt提出感知机模型(Perceptron)。感知机虽然比较简单,却已具有神经网络的一些基本性质,如分布式存贮、并行处理、可学习性、连续计算等。这些神经网络的特性与当时流行串行的、离散的、符号处理的电子计算机及其相应的人工智能技术有本质上的不同,由此引起许多研究者的兴趣。

在60代掀起了神经网络研究的第一次高潮。但是,当时人们对神经网络研究过于乐观,认为只要将这种神经元互连成一个网络,就可以解决人脑思维的模拟问题,然而,后来的研究结果却又使人们走到另一个极端上。60年代末,美国著名人工智能专家Minsky和Papert对Rosenblatt的工作进行了深人研究,出版了有较大影响的《Perceptron》一书,指出感知机的功能和处理能力的局限性,同时也指出如果在感知器中引入隐含神经元,增加神经网络的层次,可以提高神经网络的处理能力,但是却无法给出相应的网络学习算法。

另一方面,以为串行信息处理及以它为基础的传统人工智能技术的潜力是无穷的,这就暂时掩盖了发展新型计算机和寻找新的人工智能途径的必要性和迫切性。再者,当时对大脑的计算原理、对神经网络计算的优点、缺点、可能性及其局限性等还很不清楚,使对神经网络的研究进入了低潮。进入80年代,首先是基于“知识库”的专家系统的研究和运用,在许多方面取得了较大成功。但在一段时间以后,实际情况表明专家系统并不像人们所希望的那样高明,特别是在处理视觉、听觉、形象思维、联想记忆以及运动控制等方面,传统的计算机和人工智能技术面临着重重困难。
模拟人脑的智能信息处理过程,如果仅靠串行逻辑和符号处理等传统的方法来济决复杂的问题,会产生计算量的组合爆炸。因此,具有并行分布处理模式的神经网络理论又重新受到人们的重视。对神经网络的研究又开始复兴,掀起了第二次研究高潮。1982年,美国加州理工学院物理学家J.Hopfield提出了一种新的神经网络—循环神经网络。他引入了“能量函数”的概念,使得网络稳定性研究有了明确的判据。
1984年,J.Hopfield研制了后来被人们称为“Hopfield网”的电路,物理实现为神经计算机的研究奠定了基础,解决了著名的TSP问题。

1985年,UCSD的Hinton、Sejnowsky、Rumelhart等人所在的并行分布处理小组的研究者在Hopfield网中引入随机机制,提出了Boltzmann机。

1986年,Rumelhart等人在多层神经网络模型的基础上,提出了多层神经网络模型的反向传播学习算法—BP(Backpropagation)算法,解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。许多具备不同信息处理能力的神经网络已被提出来并应用于许多信息处理领域,如模式识别、自动控制、信号处理、决策辅助、人工智能等方面。
神经计算机的研究也为神经网络的理论研究提供了许多有利条件,各种神经网络模拟软件包、神经网络芯片以及电子神经计算机的出现,体现了神经网络领域的各项研究均取得了长足进展。
同时,相应的神经网络学术会议和神经网络学术刊物的大量出现,给神经网络的研究者们提供了许多讨论交流的机会。虽然人们已对神经网络在人工智能领域的研究达成了共识,对其巨大潜力也毋庸置疑,但是须知,人类对自身大脑的研究,尤其是对其中智能信息处理机制的了解,还十分肤浅。因而现有的研究成果仅仅处于起步阶段,还需许多有识之士长期的艰苦努力。

概括以上的简要介绍,可以看出,当前又处于神经网络理论的研究高潮,不仅给新一代智能计算机的研究带来巨大影响,而且将推动整个人工智能领域的发展。但另一方面,由于问题本身的复杂性,不论是神经网络原理自身,还是正在努力进行探索和研究的神经计算机,目前,都还处于起步发展阶段。
生物神经系统是一个有高度组织和相互作用的数量巨大的细胞组织群体。人类大脑的神经细胞大约在1011一1013个左右。神经细胞也称神经元,是神经系统的基本单元,它们按不同的结合方式构成了复杂的神经网络。通过神经元及其联接的可塑性,使得大脑具有学习、记忆和认知等各种智能。1.结构
神经元由细胞体(Som
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

神经网络和数据融合培训课件

文档大小:429KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用