(浙江专用)高考数学大一轮复习 第三章 导数及其应用 第2讲 导数在研究函数中的应用 第1课时 导数与函数的单调性练习(含解析)-人教版高三全册数学试题.doc 立即下载
2024-11-20
约7.7千字
约9页
0
2.4MB
举报 版权申诉
预览加载中,请您耐心等待几秒...

(浙江专用)高考数学大一轮复习 第三章 导数及其应用 第2讲 导数在研究函数中的应用 第1课时 导数与函数的单调性练习(含解析)-人教版高三全册数学试题.doc

(浙江专用)高考数学大一轮复习第三章导数及其应用第2讲导数在研究函数中的应用第1课时导数与函数的单调性练习(含解析)-人教版高三全册数学试题.doc

预览

免费试读已结束,剩余 4 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开






第1课时导数与函数的单调性

[基础达标]
1.函数f(x)=ex-ex,x∈R的单调递增区间是()
A.(0,+∞)B.(-∞,0)C.(-∞,1)D.(1,+∞)
解析:选D.由题意知,f′(x)=ex-e,令f′(x)>0,解得x>1,故选D.
2.函数f(x)=1+x-sinx在(0,2π)上的单调情况是()
A.增函数	B.减函数
C.先增后减	D.先减后增
解析:选A.在(0,2π)上有f′(x)=1-cosx>0恒成立,所以f(x)在(0,2π)上单调递增.
3.(2019·台州市高三期末质量评估)已知函数f(x)=eq\f(1,3)ax3+eq\f(1,2)ax2+x(a∈R),下列选项中不可能是函数f(x)图象的是()

解析:选D.因f′(x)=ax2+ax+1,故当a<0时,判别式Δ=a2-4a>0,其图象是答案C中的那种情形;当a>0时,判别式Δ=a2-4a>0,其图象是答案B中的那种情形;判别式Δ=a2-4a≤0,其图象是答案A中的那种情形;当a=0,即y=x也是答案A中的那种情形,应选答案D.
4.已知函数f(x)=xsinx,x∈R,则feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,5))),f(1),feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,3)))的大小关系为()
A.feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,3)))>f(1)>feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,5)))
B.f(1)>feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,3)))>feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,5)))
C.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,5)))>f(1)>feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,3)))
D.feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,3)))>feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,5)))>f(1)
解析:选A.因为f(x)=xsinx,所以f(-x)=(-x)sin(-x)=xsinx=f(x).所以函数f(x)是偶函数,所以feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,3)))=feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3))).又x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2)))时,得f′(x)=sinx+xcosx>0,所以此时函数是增函数.所以feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,5)))<f(1)<feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3))).所以feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,3)))>f(1)>feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,5))),故选A.
5.函数f(x)的定义域为R.f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()
A.(-1,1)	B.(-1,+∞)
C.(-∞,-1)	D.(-∞,+∞)
解析:选B.由f(x)>2x+4,得f(x)-2x-4>0.设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2.
因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上单调递增,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,选B.
6.(2019·温州七校联考)对于R上可导的任意函数f(x),若满足(x-3)f′(x)≤0,则必有()
A.f(0)+f(6)≤2f(3)	B.f(0)+f(6)<2f(3)
C.f(0)+f(6)≥2f(3)	D.f(0)+f(6)>2f(3)
解析:选A.由题意知,当x≥3时,f′(x)≤0,所以函数f(x)在[3,+∞)上单调递减或为常数函数;当x<3时,f′(x)≥0,所以函数f(x)在(-∞,3)上单调递增或为常数函数,所以f(0)≤f(3),f(6)≤f(3),所以f(0)+f(6)≤2f(3),故选A.
7.函数f(x)=(x-3)ex的单调递增区间是________.
解析:因为f(x)=(x-3)ex,则f′(x)=ex(x-2),令f′
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

(浙江专用)高考数学大一轮复习 第三章 导数及其应用 第2讲 导数在研究函数中的应用 第1课时 导数与函数的单调性练习(含解析)-人教版高三全册数学试题

文档大小:2.4MB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用