完整版必修三2.2.用样本估计总体教案.doc 立即下载
2024-11-25
约1.3万字
约17页
0
274KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

完整版必修三2.2.用样本估计总体教案.doc

完整版必修三2.2.用样本估计总体教案.doc

预览

免费试读已结束,剩余 12 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(完整版)必修三2.2.用样本估计总体(教案)
(完整版)必修三2.2.用样本估计总体(教案)
PAGE\*MERGEFORMAT78

PAGE\*MERGEFORMAT17

(完整版)必修三2.2.用样本估计总体(教案)

2。2用样本估计总体
教案A

第1课时

教学内容
§2.2。1用样本的频率分布估计总体分布
教学目标
一、知识与技能
1。通过实例体会分布的意义和作用。
2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.
3。通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。
二、过程与方法
通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.
三、情感、态度与价值观
通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.
教学重点、难点
重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
难点:能通过样本的频率分布估计总体的分布.
教学设想
一、创设情境
在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕
甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50
乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33
请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?
如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.
二、探究新知
探究1:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)
为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等。因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.
分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式。
下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律。可以让我们更清楚的看到整个样本数据的频率分布情况。
(一)频率分布的概念
频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率分布直方图反映样本的频率分布。其一般步骤为:
1.计算一组数据中最大值与最小值的差,即求极差;
2.决定组距与组数;
3。将数据分组;
4。列频率分布表;
5.画频率分布直方图.
以教材P65制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图.(让学生自己动手作图)
频率分布直方图的特征:
1.从频率分布直方图可以清楚的看出数据分布的总体趋势。
2.从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.
探究2:同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0。1和1为组距重新作图,然后谈谈你对图的印象?(把学生分成两大组进行,分别作出两种组距的图,然后组织同学们对所作图的不同看法进行交流……)
接下来请同学们思考下面这个问题:
思考:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2—2和频率分布直方图2.2-1,(见教材P67)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)
(二)频率分布折线图、总体密度曲线
1.频率分布折线图的定义:
连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。
2.总体密度曲线的定义:
在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.
思考:1.对于任何一个总体,它的密度曲线是不是一定存在?为什么?
2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?
实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

完整版必修三2.2.用样本估计总体教案

文档大小:274KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用