改进VMD去噪与多特征融合的声发射信号识别方法.docx 立即下载
2024-11-28
约3.3千字
约2页
0
10KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

改进VMD去噪与多特征融合的声发射信号识别方法.docx

改进VMD去噪与多特征融合的声发射信号识别方法.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

5 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

改进VMD去噪与多特征融合的声发射信号识别方法
Abstract
Vibration-basedMachineDiagnostics(VMD)isapromisingtechniquefornoisereductionandfeaturefusioninsoundemissionsignalrecognition.ThispaperproposesanimprovedVMDalgorithmfortheclassificationofsoundemissionsignals.TheimprovedVMDalgorithmcombinestheprincipalcomponentanalysis(PCA)andGrayLevelCo-occurrenceMatrix(GLCM)featurestoidentifysoundemissionsignalseffectively.Theresultsshowthattheproposedalgorithmcaneffectivelyidentifythesoundemissionsignals.
Introduction
Soundemissionsignalrecognitionisacrucialtaskinthefieldofmachinerydiagnostics.Vibration-basedMachineDiagnostics(VMD)hasrecentlybeenusedasaneffectivetechniquefornoisereductionandfeaturefusionforsoundemissionsignalclassification.Thetraditionalsignalprocessingtechniquessufferfromseveralproblems,suchaspooridentificationaccuracy,lowsignal-to-noiseratio,andpoorfeatureextractionefficiency.VMDalgorithmisappliedtodecomposeasignalintomultiplespectralcomponentsandcanretainthefrequencyandmodalinformationofthesignal,thusachievingexcellentperformanceinsoundemissionrecognition.However,VMDalgorithmsstillhaveproblemsinidentifyingweaksignalinformationandextractingeffectivefeaturesfromthesignal.
Therefore,thispaperproposesanimprovedVMDalgorithmcombinedwithPCAandGLCMfeaturestoachieveeffectivenoisereduction,featureextractionandsoundemissionrecognition.
Methodology
Inthispaper,weproposeanimprovedVMDalgorithmwithPCAandGLCMfeatures.TheimprovedVMDalgorithmconsistsofthefollowingsteps:
-Preprocessing:Therawdataispreprocessedusingthewavelettransform.Thehigh-frequencynoiseisremovedfromthedata.
-VMDdecomposition:ThesignalisdecomposedintomultiplemodesusingtheVMDalgorithm.
-PCAfeatureextraction:Principalcomponentanalysis(PCA)isperformedoneachVMDmodetoextractimportantfeatures.PCAaimstotransformthemodeintoasetoflinearlyindependentprincipalcomponentsthatdescribethemode'svariation.
-GLCMfeatureextraction:GrayLevelCo-occurrenceMatrix(GLCM)featuresareextractedfromthePCAcoefficientstorepresentthetexturepropertiesofthemodes.
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

改进VMD去噪与多特征融合的声发射信号识别方法

文档大小:10KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用