【合并同类项(提高)】之专题复习精品能力提升解析与训练教材课程.doc 立即下载
2024-12-03
约3.8千字
约9页
0
465KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

【合并同类项(提高)】之专题复习精品能力提升解析与训练教材课程.doc

【合并同类项(提高)】之专题复习精品能力提升解析与训练教材课程.doc

预览

免费试读已结束,剩余 4 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数学专题之【合并同类项】精品解析
———————————————————————————————————————


1
【合并同类项(提高)】之专题复习精品能力提升解析与训练


【学习目标】
1.掌握同类项及合并同类项的概念,并能熟练进行合并;
2.掌握同类项的有关应用;
3.体会整体思想即换元的思想的应用.
【要点梳理】
要点一、同类项
定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.
要点诠释:
(1)判断几个项是否是同类项有两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.
(2)同类项与系数无关,与字母的排列顺序无关.
(3)一个项的同类项有无数个,其本身也是它的同类项.
要点二、合并同类项
1.概念:把多项式中的同类项合并成一项,叫做合并同类项.
2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.
要点诠释:合并同类项的根据是乘法的分配律逆用,运用时应注意:
(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中照抄;
(2)系数相加(减),字母部分不变,不能把字母的指数也相加(减).
【典型例题】
类型一、同类项的概念	
例1.判别下列各题中的两个项是不是同类项:
(1)-4a2b3与5b3a2;(2)与;(3)-8和0;(4)-6a2b3c与8ca2.
【答案与解析】(1)-4a2b3与5b3a2是同类项;(2)不是同类项;(3)-8和0都是常数,是同类项;(4)-6a2c与8ca2是同类项.
【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同;“两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.此外注意常数项都是同类项.
例2.是同类项,求出m,n的值.
【答案与解析】因为是同类项,
所以,解得:
所以
【总结升华】概念的灵活运用.
举一反三:
【变式】若单项式与是同类项,则m+n=________.
【答案】6
类型二、合并同类项
例3.合并同类项:
;;
;
(注:将“”或“”看作整体)
【思路点拨】同类项中,所含“字母”,可以表示字母,也可以表示多项式,如(4).
【答案与解析】
(1)
(2)
(3)原式=
(4)
【总结升华】无同类项的项不能遗漏,在每步运算中照抄.
举一反三:
【变式1】化简:(1)(2)(a-2b)2+(2b-a)-2(2b-a)2+4(a-2b)
【答案】原式

(2)(a-2b)2+(2b-a)-2(2b-a)2+4(a-2b)
=(a-2b)2-2(a-2b)2+4(a-2b)-(a-2b)
=(1-2)(a-2b)2+(4-1)(a-2b)
=-(a-2b)2+3(a-2b).
例4.(2010烟台)若与的和是单项式,则=
【思路点拨】两个单项式的和仍是单项式,这说明与是同类项.

【答案】4
【解析】与的和是单项式,可得:与是同类项,所以:
解得:,所以
【总结升华】要善于利用题目中的隐含条件.
举一反三:
【变式】若与可以合并,则,.
【答案】
类型三、化简求值
例5.化简求值:
(1)当时,求多项式的值.
(2)若,
求多项式的值.
【答案与解析】(1)先合并同类项,再代入求值:
原式=
=
将代入,得:
(2)把当作一个整体,先化简再求值:
原式=
由可得:
两式相加可得:,所以有
代入可得:原式=
【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值.
举一反三:
【变式】.
【答案】

类型四、综合应用
例6.若多项式-2+8x+(b-1)x2+ax3与多项式2x3-7x2-2(c+1)x+3d+7恒等,求ab-cd.
【答案与解析】
法一:由已知
ax3+(b-1)x2+8x-2≡2x3-7x2-2(c+1)x+(3d+7)
∴解得:
∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27.
法二:说明:此题的另一个解法为:由已知
(a-2)x3+(b+6)x2+[2(c+1)+8]x-(3d+9)≡0.因为无论x取何值时,此多项式的值恒为零.所以它的各项系数皆为零,即从而解得

	解得:



【总结升华】若等式两边恒等,则说明等号两边对应项系数相等;若某式恒为0,则说明各项系数均为0;若某式不含某项,则说明该项的系数为0.
举一反三:
【变式1】若关于x的多项式-2x2+mx+nx2+5x-1的值与x的值无关,求(x-m)2+n的最小值.
【答案】-2x2+mx+nx2+5x-1=nx2-2x2+mx+5x-1=(n-2)x2+(m+5)x-1
∵此多项式的值与x的值无关,
∴解得:
当n=2且m=-5时,(x-m)2+n=[x
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

【合并同类项(提高)】之专题复习精品能力提升解析与训练教材课程

文档大小:465KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用