

如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基于Python的开采沉陷预计算法 Title:APython-basedAlgorithmforSubsidencePredictioninMiningOperations Abstract: Thepredictionandmanagementoflandsubsidenceiscrucialforeffectiveminingoperations.ThispaperpresentsanovelPython-basedalgorithmforpredictingandcalculatingsubsidenceinundergroundminingenvironments.Theproposedalgorithmutilizesvariousgeospatialdata,includinggeologicalcharacteristics,miningparameters,andsoilproperties,toestimatethepotentialsubsidencelevels.Byintegratingthesedatasourcesandemployingadvancedgeospatialanalysistechniques,thealgorithmprovidesaccuratepredictionsofsubsidence,enablingminingcompaniestomakeinformeddecisionsregardinginfrastructureplanningandresourceextraction. 1.Introduction Miningactivities,particularlyundergroundmining,canresultinsignificantlandsubsidenceduetotheextractionofmineralsfrombeneaththeearth'ssurface.Subsidenceposesriskstosurfacestructures,infrastructure,andtheenvironment.Therefore,accuratepredictionofsubsidenceiscrucialforensuringthesafetyandsustainabilityofminingoperations.ThispaperpresentsaPython-basedalgorithmthatleveragesgeospatialdataandadvancedanalysistechniquestoforecastandcalculatesubsidenceinminingareas. 2.LiteratureReview Severalexistingmethodshavebeendevelopedforsubsidenceprediction,includingempiricalmodels,numericalsimulations,anddata-drivenapproaches.Empiricalmodelsrelyonhistoricaldataandpreviouslyobservedsubsidencepatterns,whilenumericalsimulationsusecomplexmathematicalequationstomodelthesubsidenceprocess.Data-drivenapproaches,suchasmachinelearningandartificialneuralnetworks,utilizelargedatasetstotrainpredictivemodels.However,theseexistingmethodsoftensufferfromlimitationsregardingaccuracy,computationalefficiency,andscalability.TheproposedPython-basedalgorithmaddressestheselimitationsbyprovidinganintegratedandcustomizablesolutionforsubsidenceprediction. 3.Methodology ThePython-basedalgorithmforsubsidencepredictioninminingoperationsconsistsofseveralsteps: 3.1DataAcquisition Thealgorithmacquiresrelevantgeospatialdata,includinggeolo

快乐****蜜蜂
实名认证
内容提供者


最近下载