您所在位置: 网站首页 / 误差理论与数据处理知识总结.doc / 文档详情
误差理论与数据处理知识总结.doc 立即下载
2024-12-12
约5.6千字
约8页
0
223KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

误差理论与数据处理知识总结.doc

误差理论与数据处理知识总结.doc

预览

免费试读已结束,剩余 3 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开






第一章绪论
1.1研究误差的意义
1.1.1研究误差的意义为:
1)正确认识误差的性质,分析误差产生的愿意,以消除或减小误差
2)正确处理测量和试验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据
3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
1.2误差的基本概念
1.2.1误差的定义:误差是测得值与被测量的真值之间的差。
1.2.2绝对误差:某量值的测得值之差。
1.2.3相对误差:绝对误差与被测量的真值之比值。
1.2.4引用误差:以仪器仪表某一刻度点的示值误差为分子,以测量范围上限值或全量程为分母,所得比值为引用误差。
1.2.5误差来源:1)测量装置误差2)环境误差3)方法误差4)人员误差
1.2.6误差分类:按照误差的特点,误差可分为系统误差、随机误差和粗大误差三类。
1.2.7系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差为系统误差。
1.2.8随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差称为随机误差。
1.2.9粗大误差:超出在规定条件下预期的误差称为粗大误差。
1.3精度
1.3.1精度:反映测量结果与真值接近程度的量,成为精度。
1.3.2精度可分为:
1)准确度:反映测量结果中系统误差的影响程度
2)精密度:反映测量结果中随机误差的影响程度
3)精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可用测量的不确定度来表示。
1.4有效数字与数据运算
1.4.1有效数字:含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。
1.4.2测量结果应保留的位数原则是:其最末一位数字是不可靠的,而倒数第二位数字应是可靠的。
1.4.3数字舍入规则:保留的有效数字最末一位数字应按下面的舍入规则进行凑整:
1)若舍去部分的数值,大于保留部分的末位的半个单位,则末位加一
2)若舍去部分的数值,小于保留部分的末位的半个单位,则末位不变
3)若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。
1.4.4数据运算规则:
1)在近似数加减运算时,运算数据以小数位数最少的数据位数为准
2)在近似数乘除运算、平方或开方运算时,运算数据以有效位数最少的数据位数为准
3)在对数运算、三角函数运算时,数据有效位数应查表得到。
第二章误差的基本性质与处理
2.1随机误差
2.1.1随机误差的产生原因:1)测量装置方面的因素2)环境方面的因素3)人员方面的因素。
2.1.2随机误差一般具有以下几个特性:对称性,单峰性,有界性,抵偿性。
2.1.3正态分布:服从正态分布的随机误差均具有以上四个特征,由于多数随机误差都服从正态分布,因而正态分布在误差理论中占有十分重要的地位。
2.1.4算术平均值:在系列测量中,被测量的n个测得值的代数和除以n而得到的值称为算术平均值。
2.1.5残余误差:一般情况下,被测量的真值为未知,可用算术平均值代替被测量的真值进行计算:,υi为li的残余误差。
2.1.6算术平均值的计算校核:算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和来校核。其规则为
1)残余误差代数和应符合:
当,求得的为非凑整的准确数时,为零;
当,求得的为凑整的非准确数时,为正,其大小为求是的余数;
当,求得的x为凑整的非准确数时,为负,其大小为求x是的亏数。
2)残余误差代数和绝对值应符合:
当n为偶数时,;
当n为奇数时,。
2.1.7测量的标准差:测量的标准偏差简称为标准差,也可称之为方均根误差。
2.1.8单次测量的标准差σ是表征同一被测量的n次测量的测得值的分散性的参数,可作为测量列中单次测量不可靠性的评定标准。
2.1.9在等精度测量列中单次测量的标准差按下式计算:
2.1.10贝塞尔公式:据此式可由残余误差求的单次测量的标准差的估计值。
2.1.11评定单次测量不可靠性的参数还有或然误差和平均误差。
2.1.12算术平均值的标准差是表征同一被测量的各个独立测量列算术平均值分散性的参数,可作为算术平均值不可靠性的评定标准。
2.1.13在n此测量的等精度测量列中,算术平均值的标准差为单次测量标准差的,当测量次数n愈大时,测量精度越高。
2.1.14标准差的其他计算方法:
1)别捷尔斯法
2)极差法
3)最大误差法
2.1.16极限误差:测量的极限误差是极端误差,测量结果的误差不超过该极端误差的概率为P。
2.1.17单次测量的极限误差:。
2.1.18算术平均值的极限误差:正
查看更多
王子****青蛙
实名认证
内容提供者
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

误差理论与数据处理知识总结

文档大小:223KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用