




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
PAGE\*MERGEFORMAT9 指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质:规律:1.当两个指数函数中的a互为倒数时,两个函数关于yHYPERLINK"http://baike.baidu.com/view/811624.htm"\t"_blank"轴对称,但这两个函数都不具有HYPERLINK"http://baike.baidu.com/view/580425.htm"\t"_blank"奇偶性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。 3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。 4.指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 当底数相同时,则利用指数函数的单调性进行比较; 当底数中含有字母时要注意分类讨论; 当底数不同,指数也不同时,则需要引入中间量进行比较; 对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 对数函数 1.对数函数的概念 由于指数函数y=ax在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=ax(a>0,a≠1)的反函数称为对数函数,并记为y=logax(a>0,a≠1). 因为指数函数y=ax的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=logax的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x.据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=logax(a>0,a≠1)的性质,我们在同一直角坐标系中作出函数 y=log2x,y=log10x,y=log10x,y=logx,y=logx的草图 由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=logax(a>0,a≠1)的图像的特征和性质.见下表. 图 象a>1a<1 性 质(1)x>0(2)当x=1时,y=0(3)当x>1时,y>0 0<x<1时,y<0(3)当x>1时,y<0 0<x<1时,y>0(4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数补充 性质设y1=logaxy2=logbx其中a>1,b>1(或0<a<10<b<1) 当x>1时“底大图低”即若a>b则y1>y2 当0<x<1时“底大图高”即若a>b,则y1>y2比较对数大小的常用方法有: (1)若底数为同一常数,则可由对数函数的单调性直接进行判断. (2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论. (3)若底数不同、真数相同,则可用换底公式化为同底再进行比较. (4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较. 3.指数函数与对数函数对比 名称指数函数对数函数一般形式y=ax(a>0,a≠1)y=logax(a>0,a≠1)定义域(-∞,+∞)(0,+∞)值域(0,+∞)(-∞,+∞) 函 数 值 变 化 情 况当a>1时, 当0<a<1时, 当a>1时 当0<a<1时, 单调性当a>1时,ax是增函数; 当0<a<1时,ax是减函数.当a>1时,logax是增函数; 当0<a<1时,logax是减函数.图像y=ax的图像与y=logax的图像关于直线y=x对称.幂函数 幂函数的图像与性质 幂函数随着的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握,当的图像和性质,列表如下. 从中可以归纳出以下结论: 它们都过点,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. 时,幂函数图像过原点且在上是增函数. 时,幂函数图像不过原点且在上是减函数. 何两个幂函数最多有三个公共点. 奇函数 偶函数 非奇非偶函数O x y O x y O x y O x y O x y O x y O x y O x y O x y 定义域RRR奇偶性奇奇奇非奇非偶奇在第Ⅰ象限的增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递减

王子****青蛙
实名认证
内容提供者


最近下载