




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
导数题型总结 1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 2、变更主元-----已知谁的范围就把谁作为主元 3、根分布4、判别式法-----结合图像分析 5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 一、基础题型:函数的单调区间、极值、最值;不等式恒成立 此类问题提倡按以下三个步骤进行解决: 第一步:令得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。 例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数, (1)若在区间上为“凸函数”,求m的取值范围; (2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值. 解:由函数得 (1)在区间上为“凸函数”, 则在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于 解法二:分离变量法: ∵当时,恒成立, 当时,恒成立 等价于的最大值()恒成立, 而()是增函数,则 (2)∵当时在区间上都为“凸函数” 则等价于当时恒成立 变更主元法 再等价于在恒成立(视为关于m的一次函数最值问题) -2 2 例2:设函数 (Ⅰ)求函数f(x)的单调区间和极值; (Ⅱ)若对任意的不等式恒成立,求a的取值范围. 解:(Ⅰ) 3a a a 3a 令得的单调递增区间为(a,3a) 令得的单调递减区间为(-,a)和(3a,+) ∴当x=a时,极小值=当x=3a时,极大值=b. (Ⅱ)由||≤a,得:对任意的恒成立① 则等价于这个二次函数的对称轴(放缩法) 即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。 上是增函数. (9分) ∴ 于是,对任意,不等式①恒成立,等价于 又∴ 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系 例3:已知函数图象上一点处的切线斜率为, (Ⅰ)求的值; (Ⅱ)当时,求的值域; (Ⅲ)当时,不等式恒成立,求实数t的取值范围。 解:(Ⅰ)∴,解得 (Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减 又 ∴的值域是 (Ⅲ)令 思路1:要使恒成立,只需,即分离变量 思路2:二次函数区间最值 二、参数问题 1、题型一:已知函数在某个区间上的单调性求参数的范围 解法1:转化为在给定区间上恒成立,回归基础题型 解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集; 做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集 例4:已知,函数. (Ⅰ)如果函数是偶函数,求的极大值和极小值; (Ⅱ)如果函数是上的单调函数,求的取值范围. 解:. (Ⅰ)∵是偶函数,∴.此时,, 令,解得:. 列表如下: (-∞,-2)-2(-2,2)2(2,+∞)+0-0+递增极大值递减极小值递增可知:的极大值为,的极小值为. (Ⅱ)∵函数是上的单调函数, ∴,在给定区间R上恒成立判别式法 则解得:. 综上,的取值范围是. 例5、已知函数 (I)求的单调区间; (II)若在[0,1]上单调递增,求a的取值范围。子集思想 解:(I) 1、 当且仅当时取“=”号,单调递增。 2、 a-1 -1 单调增区间: 单调增区间: (II)当则是上述增区间的子集: 1、时,单调递增符合题意 2、, 综上,a的取值范围是[0,1]。 2、题型二:根的个数问题 题1函数f(x)与g(x)(或与x轴)的交点,即方程根的个数问题 解题步骤 第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”; 第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系; 第三步:解不等式(组)即可。 例6、已知函数,,且在区间上为增函数. 求实数的取值范围; 若函数与的图象有三个不同的交点,求实数的取值范围. 解:(1)由题意∵在区间上为增函数, ∴在区间上恒成立(分离变量法) 即恒成立,又,∴,故∴的取值范围为 (2)设, 令得或由(1)知, ①当时,,在R上递增,显然不合题意… ②当时,,随的变化情况如下表: —↗极大值↘极小值 ↗由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得 综上,所求的取值范围为 根的个数知道,部分根可求或已知。 例7、已知函数 (1)若是的极值点且的图像过原点,求的极值; (2)若,在(1)的条件下,是否存在实数,使得

王子****青蛙
实名认证
内容提供者


最近下载
一种基于双轨缆道的牵引式雷达波在线测流系统.pdf
一种基于双轨缆道的牵引式雷达波在线测流系统.pdf
一种胃肠道超声检查助显剂及其制备方法.pdf
201651206021+莫武林+浅析在互联网时代下酒店的营销策略——以湛江民大喜来登酒店为例.doc
201651206021+莫武林+浅析在互联网时代下酒店的营销策略——以湛江民大喜来登酒店为例.doc
用于空间热电转换的耐高温涡轮发电机转子及其装配方法.pdf
用于空间热电转换的耐高温涡轮发电机转子及其装配方法.pdf
用于空间热电转换的耐高温涡轮发电机转子及其装配方法.pdf
用于空间热电转换的耐高温涡轮发电机转子及其装配方法.pdf
用于空间热电转换的耐高温涡轮发电机转子及其装配方法.pdf