您所在位置: 网站首页 / 数列通项公式方法总结.doc / 文档详情
数列通项公式方法总结.doc 立即下载
2024-12-19
约3.8千字
约9页
0
20KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

数列通项公式方法总结.doc

数列通项公式方法总结.doc

预览

免费试读已结束,剩余 4 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第页共NUMPAGES9页
数列通项公式方法总结

数列通项公式方法总结
导语:数列既是高中数学的重要内容,也是学习高等数学的基础,因此,每年高考对本章内容均作较全面的考查,而且经常是以综合题、主观题的形式出现,难度较大,以下是小编整理数列通项公式方法总结的资料,欢迎阅读参考。
不过一般分小题、有梯度设问,往往是第1小题就是求数列的通项公式,难度适中,一般考生可突破,争取分数,而且是做第2小题的基础,因此,求数列通项公式的解题方法、技巧,每一位考生都必须熟练掌握。求数列通项公式的题型很多,不同的题型有不同的解决方法。下面结合教学实践,谈谈求数列通项公式的解题思路。
一、已知数列的.前几项
已知数列的前几项,求通项公式。通过观察找规律,分析出数列的项与项数之间的关系,从而求出通项公式。这种方法称为观察法,也即是归纳推理。
例1、求数列的通项公式
(1)0,22——1/3,32——1/4,42+1/5……
(2)9,99,999,……
分析:(1)0=12——1/2,每一项的分子是项数的平方减去1,分母是项数加上1,n2——1/n+1=n——1,其实,该数列各项可化简为0,1,2,3,……,易知an=n——1。
(2)各项可拆成10-1,102-1,103-1,……,an=10n——1。
此题型主要通过让学生观察、试验、归纳推理等活动,且在此基础上进一步通过比较、分析、概括、证明去揭示事物的本质,从而培养学生的思维能力。
二、已知数列的前n项和Sn
已知数列的前n项和Sn,求通项公式an,主要通过an与Sn的关系转化,即an-{S1(n=1)Sn-Sn——1(n≥2)
例2、已知数列{an}的前n项和Sn=2n+3,求an
分析:Sn=a1+a2+……+an——1+an
Sn——1=a1+a2+……+an——1
上两式相减得Sn-Sn——1=an
解:当n=1时,a1=S1=5
当n≥2时,an=Sn-Sn——1=2n+3-(2n——1+3)=2n——1
∵n=1不适合上式
∴an={5(n=1)2n——1(n≥2)
三、已知an与Sn关系
已知数列的第n项an与前n项和Sn间的关系:Sn=f(an),求an。一般的思路是先将Sn与an的关系转化为an与an——1的关系,再根据与的关系特征分为如下几种类型。不同的类型,要用不同的方法解决。
(1)an=an——1+k。数列属等差数列,直接代公式可求通项公式。
例3、已知数列{an},满足a1=3,an=an——1+8,求an。
分析:由已知条件可知数列是以3为首项,8为公差的等差数列,直接代公式可求得an=8n-5。
(2)an=kan——1(k为常数)。数列属等比数列,直接代公式可求通项公式。
例4、数列{an}的前n项和Sn,a1=1,an+1=2Sn+1(n∈N+)
求数列{an}的通项公式。
分析:根据an与Sn的关系,将an+1=2Sn+1转化为an与an+1的关系。
解:由an+1=2Sn+1
得an=2Sn-1+1(n≥2)
两式相减,得an+1-an=2an
∴an+1=3an(n≥2)
∵a2=2Sn+1=3
∴a2=3a1
∴{an}是以1为首项,3为公比的等比数列
∴an=3n-1
(3)an+1=an+f(n),用叠加法
思路:令n=1,2,3,……,n-1
得a2=a1+f(1)
a3=a2+f(2)
a4=a3+f(3)
……
+)an=an——1+f(n-1)
an=a1+f(1)+f(2)+…+f(n-1)
例5、若数列{an}满足a1=2,an+1=an+2n
则{an}的通项公式=()
解:∵an+1=an+2n
∴a2=a1+2×1
a3=a2+2×2
a4=a3+2×3
……
+)an=an——1+2(n-1)
an=a1+2(1+2+3+…+n-1)
=2+2×(1+n-1)(n-1)
=n2-n+2
(4)an+1=f(n)an,用累积法
思路:令n=1,2,3,……,n-1
得a2=f(1)a1a3=f(2)a2a4=f(3)a3
……
×)an=f(n-1)an-1
an=a1·f(1)·f(2)·f(3)……f(n-1)
例6、若数列{an}满足a1=1,an+1=2n+an,则an=()
解:∵an+1=2nan∴a2=21a1
a3=22a2a4=23a3
……
×)an=2n——1·an——1
an=2·22·23·……·2n-1a1=2n(n-1)/2
(5)an=pan——1+q,an=pan——1+f(n)
an+1=an+p·qn(pq≠0),
an=p(an——1)q,an+1=ran/pan+q=(pr≠0,q≠r)
(p、q、r为常数)
这些类型均可用构造法或迭代法。
①an=pan——1+q(p、q为常数
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

数列通项公式方法总结

文档大小:20KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用