




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
初中数学教学设计 初中数学教学设计(范例15篇)作为一名辛苦耕耘的教育工作者,时常需要准备好教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么问题来了,教学设计应该怎么写?以下是小编为大家收集的初中数学教学设计,希望能够帮助到大家。初中数学教学设计1一、学情分析八年级学生具有强烈的好胜心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理二、教材分析这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。三、教学目标设计知识与技能探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用过程与方法(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法情感态度与价值(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。四、教学重点难点教学重点探索和证明勾股定理教学难点用拼图的方法证明勾股定理五、教学方法(学法)“引导探索法”(自主探究,合作学习,采用小组合作的方法。六、教具准备课件、三角板七、教学过程设计教学环节1教学过程:创设情境探索新知教师活动:出示第24届国际数学家大会的.会徽的图案向学生提问(1)你见过这个图案吗?(2)你听说过“勾股定理”吗?学生活动:学生思考回答设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。教学环节教学过程:实验操作获取新知归纳验证完善新知教师活动:出示课件,引导学生探索学生活动:猜想实验合作交流画图测量拼图验证设计意图:渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望.给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。教学环节3教学过程:解决问题应用新知教师活动:出示例题和练习学生活动:交流合作,解决问题设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识.教学环节4教学内容:课堂小结巩固新知布置作业教师活动:引导学生小结学生活动:讨论交流、自由发言设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦.通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导.八、板书设计勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么a2+b2=c2。九、习题拓展如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。(1)求梯子上端A到墙的底端B的距离AB。(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?十、作业设计1、收集有关勾股定理的证明方法,下节课展示、交流.2、做一棵奇妙的勾股树(选做)初中数学教学设计2教学目标1、知识与技能:(1)理解一元一次不等式组及其解集的意义;(2)掌握一元一次不等式组的解法。2、过程与方法:(1)经历通过具体问题抽象出不等式组的过程,培养学生逐步形成分析问题和解决问题的能力。(2)经历一元一次不等式组解集的探究过程,培养学生的观察能力和数形结合的思想方法,渗透类比和化归思想。3、情感、态度与价值观:(1)感受数形结合思想在数学学习中的作用,养成自主探究的良好学习习惯。(2)学生在解不等式组的过程中体会用数学解决问题的直观美和简洁美。2学情分析本节讨论的对象是一元一次不等式组。几个一元

一条****贺6
实名认证
内容提供者


最近下载