您所在位置: 网站首页 / 分式方程教学设计.docx / 文档详情
分式方程教学设计.docx 立即下载
2025-08-16
约1万字
约23页
0
23KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

分式方程教学设计.docx

分式方程教学设计.docx

预览

免费试读已结束,剩余 18 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

分式方程教学设计

作为一名教师,时常需要用到教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么什么样的教学设计才是好的呢?以下是小编整理的分式方程教学设计,希望能够帮助到大家。分式方程教学设计1一、教学内容分析:本节“分式方程”是人教版八年级下册第16章第3节的内容,是继一元一次方程,二元一次方程组之后,初中阶段所讲授的又能一种方程的解法。本节课是在继分式的内容及分式的四则混合运算之后所讲述的一个内容,其实际上就是分式与方程的综合。因此本节课可以看作是一个综合课,同时分式方程的解法也是初中阶段的一个重点内容,要求学生必须掌握。二、学情分析:在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路(使方程逐步化为x=a的形式)已经比较熟悉,而分式方程的未知数在分母中,它的解法比以前学过的方程复杂,需通过转化思想,化分式方程为整式方程。三、教学目标:1、明确什么是分式方程?会区分整式方程与分式方程。2、会解可化为一元一次方程的分式方程。3、知道分式方程产生增根的原因,并学会如何验根。四、教学重点:分式方程的解法。教学难点:理解分式方程可能产生增根的原因。五、教学流程1、忆一忆(1)什么叫方程?什么叫方程的解?(2)什么叫分式?(3)结合具体例子说出解一元一次方程的'步骤。设计意图:让学生由旧知识的回忆自然引出新知识便于学生理解接受。2x-(x-1)/3=63x/4+(2x+1)/3=02、猜一猜板书课题“分式方程”,让学生猜一猜其概念,结合分式和方程的特点学生易得出:分母中含有未知数的方程叫分式方程。设计意图:采用这种形式引入今天的话题,让学生觉得不是在上数学,而象是在拉家常,让学生没有负担,另外,学生在前面的回忆的基础上很容易猜出来分式方程的概念。这样使学生感受到数学的简单,从而树立学好数学的信心。3、辨一辨判断下列方程是不是分式方程,并说出为什么?1/(x-2)=3/xx(x-1)/x=-1(3-x)/=x/22x+(x-1)/5=103/x=2/(x-3)(2x+1)/x+3x=1指出:分式方程与整式方程的区别(分母中含不含未知数)设计意图:学生说出来了分式方程的概念还远远不够,通过这道题使学生更进一步的巩固分式方程的概念。(x-1)/x=-1这个方程可能学生会有争议,让学生说出自己的意见后,老师可总结,在判断方是否为分式方程时,不能化简,以形式为准。4、想一想提出该如何解方程呢?让学生讨论后得出:通过去分母,方程两边同乘以各分母的最简公分母,回忆最简公分母的定义。设计意图:让学生自己去想该如何解,然后老师加以指导,这样会使学生感觉到自己真正是课堂的主人,从而全身心地投入学习。5、试一试(1)80/(x+5)(2)1/(x-5)=10/x.x-25方程两边同乘以x(x+5)得:方程两边同乘以(x+5)(x-5)得:80x=60(x+5)x+5=1080x=60x+300x=520x=300x=15提醒学生检验,对比两个方程发现问题。设计意图:通过提醒学生检验,让学生自己发现问题。从而自然引出话题。6、议一议分式方程为什么会产生增根?(两边都乘以了一个零因式,但这个根是整式方程的解)所以分式方程的检验代入最简公分母即可,提出,分式方程能不检验吗?通过讨论使学生得出分式方程必须检验,因为分式方程的检验是为了看是不是增根,而不是检验对错,所以必须检验。7、说一说老师帮忙总结出解分式方程的一般步骤:1、程两边都乘最简公分母,约去分母,化为整式方程。2、解这个整式方程。3、把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,必须舍去。可简单记作:一化二解三检验。设计意图:让学生对所学知识上升到一个理论高度。8、做一做解方程:(1)2/(x-3)=3/x(2)x/(x-1)-1=3/(x-1)(x+2)体验解分式方程的完整过程。分式方程教学设计21教学目标1.了解分式方程的概念,和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.2学情分析3重点难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.3.认知难点与突破方法4教学过程4.1第一学时评论(0)新设计一、解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应让学生掌握验根的方法.二、要使学生掌握解分式方程的基本
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

分式方程教学设计

文档大小:23KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用