




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
分式的教案 作为一位杰出的教职工,往往需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。教案应该怎么写才好呢?下面是小编为大家整理的分式的教案,仅供参考,欢迎大家阅读。分式的教案1教学目标:1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.2、使学生掌握运用去分母或换元的方法解可化为一元二次方程的分式方程;使学生理解转化的数学基本思想;3、使学生能够利用最简公分母进行验根.教学重点:可化为一元二次方程的分式方程的解法.教学难点:教学难点:解分式方程,学生不容易理解为什么必须进行检验.教学过程:在初二我们已经学过分式方程的概念及可化为一元一次方程的分式方程的解法,知道了解可化为一元一次方程的分式方程的解题步骤以及验根的目的,了解了转化的思想方法的基本运用.今天,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“12.7节”是在学生已经掌握的同类型的方程的解法,直接点出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原因,以激发学生归纳总结的欲望,使学生理解类比方法在数学解题中的重要性,使学生进一步加深对“转化”这一基本数学思想的理解,抓住学生的注意力,同时可以激起学生探索知识的欲望.为了使学生能进一步加深对“类比”、“转化”的理解,可以通过回忆复习可化为一元一次方程的分式方程的解法,探求解可化为一元二次方程的分式方程的解法,同时通过对产生增根的分析,来达到学生对“类比”的方法及“转化”的基本数学思想在数学学习中的重要性的.理解,从而调动学生能积极主动地参与到教学活动中去.一、新课引入:1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?3、产生增根的原因是什么?.二、新课讲解:通过新课引入,可直接点出本节的内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相同.点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.在前面的基础上,为了加深学生对新知识的理解,与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.分式的教案2教学目标:1、经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程(方程中分式不超过两个),会检验根的合理性,明确可化为一元一次方程的分式方程与一元一次方程的联系与区别。2、通过探究,领会“类比”和“转化”这两种重要的数学思想,培养思维的严密性和条理性。3、通过小组合作探究,增强团队意识,感受成果共享受愉快。教学重、难点:分式方程如何转化为一元一次方程来求解和验根。课前准备:分组准备:1、回顾什么是最简公分母?2、解一元一次方程的一般步骤,解方程:2(X-1)/3=5/63、分式方程的概念4、分式的基本性质,等式的基本性质板书设计:4.解方程1、解一元一次方程2(X-1)/3=5/62、你能设法求出下面分式方程的解吗?9000/X=15000/(X+3000)试一试3、例1……4、例2……5、解分式方程的一般步骤教学过程设计:活动1提出问题,激发兴趣1、教师出示问题:你还记得怎样解一元一次方程吗?试一试。2(X-1)/3=5/62、指名解题,师生点评,共同回忆解一元一次方程的步骤及每一步的'方法和依据。3、教师出示上一节课中所列的分式方程9000/X=15000/(X+3000),并提出问题:这是我们上节课所列的方程,有什么特点?你能解吗?试一试(复习分式方程的概念)从而导出新课,板书课题。活动2合作探究,解决问题1、学生分小组尝试解上面的方程,并了解学生解题情况,看有无学生发现先将分式方程转化为整式方程,再求解,若有则因势利导,若无,则通过后面的例题慢慢渗透。同时肯定利用比例的知识解题的方法。2、教师出示例1前面我们每位同学都尝试了解分式方程,有的同学很有办法,将它解出来,并且有理有据,但也有的同学一时还解不出来,下面让我们一起再来探讨如何解分式方程。3、教师引导学生解方程,注意分式方程如何转化为一元一次方程,渗透转化思想,注意展示解题的步骤和格式,注意告诉学生检验转化后方程的解是不是原分式的解。4、教师出示例2,并指名上讲台演练学生自主练习,看看自己能不能解分式方程,并把过程简要地写下来。5、师生共同点评。6、教师出示“议一议”内容,要求学生分小组讨论,首先小亮的解题过程有没有不对的地方?如果没有,你认为X=2是原方程的根吗?通过学生的讨论,补充,教师告诉学生“增根”这一概念,并简要介绍产生增根的

建英****66
实名认证
内容提供者


最近下载
一种胃肠道超声检查助显剂及其制备方法.pdf
201651206021+莫武林+浅析在互联网时代下酒店的营销策略——以湛江民大喜来登酒店为例.doc
201651206021+莫武林+浅析在互联网时代下酒店的营销策略——以湛江民大喜来登酒店为例.doc
用于空间热电转换的耐高温涡轮发电机转子及其装配方法.pdf
用于空间热电转换的耐高温涡轮发电机转子及其装配方法.pdf
用于空间热电转换的耐高温涡轮发电机转子及其装配方法.pdf
用于空间热电转换的耐高温涡轮发电机转子及其装配方法.pdf
用于空间热电转换的耐高温涡轮发电机转子及其装配方法.pdf
用于空间热电转换的耐高温涡轮发电机转子及其装配方法.pdf
论《离骚》诠释史中的“香草”意蕴.docx