您所在位置: 网站首页 / 高中数学概率知识点.docx / 文档详情
高中数学概率知识点.docx 立即下载
2025-08-18
约3.2千字
约7页
0
13KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

高中数学概率知识点.docx

高中数学概率知识点.docx

预览

免费试读已结束,剩余 2 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中数学概率知识点

在我们平凡的学生生涯里,说起知识点,应该没有人不熟悉吧?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。想要一份整理好的知识点吗?下面是小编为大家收集的高中数学概率知识点,欢迎阅读,希望大家能够喜欢。高中数学概率知识点篇1基本事件的定义:一次试验连同其中可能出现的每一个结果称为一个基本事件。等可能基本事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。古典概型:如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件的发生都是等可能的;那么,我们称这个随机试验的概率模型为古典概型.古典概型的概率:如果一次试验的等可能事件有n个,那么,每个等可能基本事件发生的概率都是如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为古典概型解题步骤:(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数n和事件A所包含的'结果数m;(4)用公式求出概率并下结论。求古典概型的概率的关键:求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。高一数学必修3几何概型知识点几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)称比例,则称这样的概率模型为几何概率模型,简称为几何概型。几何概型的概率:一般地,在几何区域D中随机地取一点,记事件"该点落在其内部一个区域d内"为事件A,则事件A发生的概率说明:(1)D的测度不为0;(2)其中"测度"的意义依D确定,当D分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积;(3)区域为"开区域";(4)区域D内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等。高中数学概率知识点篇2相互独立事件的定义:如果事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。若A,B是两个相互独立事件,则A与与B都是相互独立事件。相互独立事件同时发生的概率:两个相互独立事件同时发生,记做A·B,P(A·B)=P(A)·P(B)。若A1,A2,…An相互独立,则n个事件同时发生的概率等于每个事件发生的`概率的积,即P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An)。求相互独立事件同时发生的概率的方法:(1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁或难以入手时,可从其对立事件入手计算。高中数学概率知识点篇3概率3.1.1—3.1.2随机事件的概率及概率的意义1、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的`不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);4)互斥事件
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

高中数学概率知识点

文档大小:13KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用