您所在位置: 网站首页 / 《函数的应用》教案.docx / 文档详情
《函数的应用》教案.docx 立即下载
2025-08-18
约4.2万字
约90页
0
61KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

《函数的应用》教案.docx

《函数的应用》教案.docx

预览

免费试读已结束,剩余 85 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《函数的应用》教案

在教学工作者开展教学活动前,总归要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么你有了解过教案吗?下面是小编收集整理的《函数的应用》教案,希望对大家有所帮助。《函数的应用》教案1一、内容与解析(一)内容:对数函数的性质(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。二、目标及解析(一)教学目标:1.掌握对数函数的性质并能简单应用(二)解析:(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。三、问题诊断分析在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.四、教学支持条件分析在本节课()的教学中,准备使用(),因为使用(),有利于().五、教学过程问题1.先画出下列函数的简图,再根据图象归纳总结对数函数的相关性质。设计意图:师生活动(小问题):1.这些对数函数的解析式有什么共同特征?2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。3.通过这些函数图象请从函数值的分布角度总结相关性质4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?问题2.先画出下列函数的简图,根据图象归纳总结对数函数的相关性质。问题3.根据问题1、2填写下表图象特征函数性质a>10<a<1a>10<a<1向y轴正负方向无限延伸函数的值域为R+图象关于原点和y轴不对称非奇非偶函数函数图象都在y轴右侧函数的定义域为R函数图象都过定点(1,0)自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1[设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成例1.比较下列各组数中两个值的大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)loga5.1,loga5.9(a>0,且a≠1)变式训练:1.比较下列各题中两个值的大小:⑴log106log108⑵log0.56log0.54⑶log0.10.5log0.10.6⑷log1.50.6log1.50.42.已知下列不等式,比较正数m,n的大小:(1)log3mlog0.3n(3)logam1)例2.(1)若且,求的取值范围(2)已知,求的取值范围;六、目标检测1.比较,,的大小:2.求下列各式中的x的值(1)演绎推理导学案2.1.2演绎推理学习目标1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.学习过程一、前准备复习1:归纳推理是由到的推理.类比推理是由到的'推理.复习2:合情推理的结论.二、新导学※学习探究探究任务一:演绎推理的概念问题:观察下列例子有什么特点?(1)所有的金属都能够导电,铜是金属,所以;(2)一切奇数都不能被2整除,20xx是奇数,所以;(3)三角函数都是周期函数,是三角函数,所以;(4)两条直线平行,同旁内角互补.如果A与B是两条平行直线的同旁内角,那么.新知:演绎推理是的推理.简言之,演绎推理是由到的推理.探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?所有的金属都导电铜是金属铜能导电已知的一般原理特殊情况根据原理,对特殊情况做出的判断大前提小前提结论新知:“三段论”是演绎推理的一般模式:大前提——;小前提——;结论——.新知:用集合知识说明“三段论”:大前提:小前提:结论:试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的形式.※典型例题例1命题:等腰三角形的两底角相等已知:求证:证明:把上面推理写成三段论形式:变式:已知空
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

《函数的应用》教案

文档大小:61KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用