




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
初中数学教案优秀 初中数学人教版教案优秀(精选11篇)作为一位杰出的老师,时常需要编写教案,教案有助于顺利而有效地开展教学活动。那么你有了解过教案吗?以下是小编为大家收集的初中数学人教版教案优秀,欢迎阅读与收藏。初中数学教案优秀1教学目标:1、掌握一元二次方程的根与系数的关系并会初步应用。2、培养学生分析、观察、归纳的能力和推理论证的能力。3、渗透由特殊到一般,再由一般到特殊的认识事物的规律。4、培养学生去发现规律的积极性及勇于探索的精神。教学重点与难点:重点根与系数的关系及其推导难点正确理解根与系数的关系。一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系。教学过程:一、复习引入1、已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。2、由上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程x1x2x1+x2x1x2x2-2x=0x2+3x-4=0x2-5x+6=0观察上面的表格,你能得到什么结论?(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程x1x2x1+x2x1x22x2-7x-4=03x2+2x-5=05x2-17x+6=0小结:根与系数关系:(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)(2)形如ax2+bx+c=0(a≠0)的'方程,可以先将二次项系数化为1,再利用上面的结论。即:对于方程ax2+bx+c=0(a≠0)∵a≠0,∴x2+bax+ca=0∴x1+x2=-ba,x1x2=ca(可以利用求根公式给出证明)例1不解方程,写出下列方程的两根和与两根积:(1)x2-3x-1=0(2)2x2+3x-5=0(3)13x2-2x=0(4)2x2+6x=3(5)x2-1=0(6)x2-2x+1=0例2不解方程,检验下列方程的解是否正确?(1)x2-22x+1=0(x1=2+1,x2=2-1)(2)2x2-3x-8=0(x1=7+734,x2=5-734)例3已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程。(你有几种方法?)例4已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值。变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.三、课堂小结1、根与系数的关系。2、根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零。四、作业布置1、不解方程,写出下列方程的两根和与两根积。(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0(4)3x2+x+1=02、已知方程x2-3x+m=0的一个根为1,求另一根及m的值。3、已知方程x2+bx+6=0的一个根为-2,求另一根及b的值初中数学教案优秀2教学内容:人教版七年级数学下册第八章二元一次方程组第2节P96页教学目标:(1)基础知识与技能目标:会用代入消元法解简单的二元一次方程组。(2)过程与方法目标:经历探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法。(3)情感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。教学重、难点与教学关键教学重点:用代入消元法解二元一次方程组教学难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。学生分析授课对象为少数民族地区的七年级学生,基础知识薄弱,特别是对一元一次方程内容掌握的不够透彻,再加上厌学现象严峻,团结协作的能力差,本节课设计了他们感兴趣的篮球比赛和常用的消毒液作为题材来研究二元一次方程组,既能调动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。教学内容分析:本节主要内容是在上节已认

是你****晨呀
实名认证
内容提供者


最近下载