您所在位置: 网站首页 / 反比例函数的应用教学设计.docx / 文档详情
反比例函数的应用教学设计.docx 立即下载
2025-08-18
约3.8千字
约9页
0
14KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

反比例函数的应用教学设计.docx

反比例函数的应用教学设计.docx

预览

免费试读已结束,剩余 4 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

反比例函数的应用教学设计

作为一名老师,总不可避免地需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么写教学设计需要注意哪些问题呢?以下是小编收集整理的反比例函数的应用教学设计,欢迎阅读,希望大家能够喜欢。教学目标1.经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。2.理解反比例函数的概念,会列出实际问题的反比例函数关系式。3.使学生会画出反比例函数的图象。4.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。教学重点1、使学生了解反比例函数的表达式,会画反比例函数图象2、使学生掌握反比例函数的图象性质3、利用反比例函数解题教学难点1、列函数表达式2、反比例函数图象解题教学过程教师活动一、作业检查与讲评二、复习导入1.什么是正比例函数?我们知道当(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)创设问题情境问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式.设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时.因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大.2.自变量v的取值是v>0.问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.分析根据矩形面积可知xy=24,即从这个关系中发现:1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;2.自变量的取值是x>0.三、新课讲解上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportionalfunction).说明1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系.2.反比例函数的解析式又可以写成:(k是常数,k≠0).3.要求出反比例函数的解析式,只要求出k即可.实践应用例1下列函数关系中,哪些是反比例函数?(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;(2)压强p一定时,压力F与受力面积s的关系;(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.例2当m为何值时,函数是反比例函数,并求出其函数解析式.例3将下列各题中y与x的函数关系与出来.(1),z与x成正比例;(2)y与z成反比例,z与3x成反比例;(3)y与2z成反比例,z与成正比例;例4已知y与x2成反比例,并且当x=3时,y=2.求x=1.5时y的值.分析因为y与x2成反比例,所以设,再用待定系数法就可以求出k,进而再求出y的值.例5已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.小结一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportionalfunction).要求反比例函数的解析式,可通过待定系数法求出k值,即可确定.练习21.分别写出下列问题中两个变量间的函数关系式,指出哪些是正比例函数,哪些是反比例函数,哪些既不是正比例函数也不是反比例函数?(1)小红一分钟可以制作2朵花,x分钟可以制作y朵花;(2)体积为100cm3的长方体,高为hcm时,底面积为Scm2;(3)用一根长50cm的铁丝弯成一个矩形,一边长为xcm时,面积为ycm2;(4)小李接到对长为100米的管道进行检修的任务,设每天能完成10米,x天后剩下的未检修的管道长为y米.2.已知y与x-2成反比例,当x=4时,y=3,求当x=5时,y的值.3.已知y=y1+y2,y1与成正比例,y2与x2成反比例.当x=1时,y=-12;当x=4时,y=7.(1)求y与x的函数关系式和x的取范围;(2)当x=时,求y的值.4.已知一个长方体的体积是100立方厘米,它的长是ycm,宽是5cm,高是xcm.(1)写出用高表示长的函数
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

反比例函数的应用教学设计

文档大小:14KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用