您所在位置: 网站首页 / 数学定理的教案.docx / 文档详情
数学定理的教案.docx 立即下载
2025-08-18
约2.2万字
约46页
0
36KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

数学定理的教案.docx

数学定理的教案.docx

预览

免费试读已结束,剩余 41 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数学定理的教案

作为一位优秀的人民教师,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。快来参考教案是怎么写的吧!以下是小编为大家整理的数学定理的教案,供大家参考借鉴,希望可以帮助到有需要的朋友。数学定理的教案1向量证明正弦定理表述:设三面角∠P—ABC的三个面角∠BPC,∠CPA,∠APB所对的二面角依次为∠PA,∠PB,∠PC,则Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA=Sin∠PC/Sin∠APB。目录1证明2全向量证明证明过A做OA⊥平面BPC于O。过O分别做OM⊥BP于M与ON⊥PC于N。连结AM、AN。显然,∠PB=∠AMO,Sin∠PB=AO/AM;∠PC=∠ANO,Sin∠PC=AO/AN。另外,Sin∠CPA=AN/AP,Sin∠APB=AM/AP。则Sin∠PB/Sin∠CPA=AO×AP/(AM×AN)=Sin∠PC/Sin∠APB。同理可证Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA。即可得证三面角正弦定理。全向量证明如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°—A,j与向量CB的夹角为90°—C由图1,AC+CB=AB(向量符号打不出)在向量等式两边同乘向量j,得·j·AC+CB=j·AB∴│j││AC│cos90°+│j││CB│cos(90°—C)=│j││AB│cos(90°—A)∴asinC=csinA∴a/sinA=c/sinC同理,过点C作与向量CB垂直的单位向量j,可得c/sinC=b/sinB∴a/sinA=b/sinB=c/sinC2步骤1记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c∴a+b+c=0则i(a+b+c)=i·a+i·b+i·c=a·cos(180—(C—90))+b·0+c·cos(90—A)=—asinC+csinA=0接着得到正弦定理其他步骤2、在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/sinC步骤3、证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,作ABC的外接圆O、作直径BD交⊙O于D、连接DA、因为直径所对的圆周角是直角,所以∠DAB=90度因为同弧所对的圆周角相等,所以∠D等于∠C、所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。3用向量叉乘表示面积则s=CB叉乘CA=AC叉乘AB=>absinC=bcsinA(这部可以直接出来哈哈,不过为了符合向量的做法)=>a/sinA=c/sinC20xx—7—1817:16jinren92|三级记向量i,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理其他步骤2、在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,4过三角形ABC的.顶点A作BC边上的高,垂足为D、(1)当D落在边BC上时,向量AB与向量AD的夹角为90°—B,向量AC与向量AD的夹角为90°—C,由于向量AB、向量AC在向量AD方向上的射影相等,有数量积的几何意义可知向量AB—向量AD=向量AC—向量AD即向量AB的绝对值—向量AD的绝对值—COS(90°—B)=向量的AC绝对值—向量AD的绝对值—cos(90°—C)所以csinB=bsinC即b/sinB=c/sinC(2)当D落在BC的延长线上时,同样可以证得数学定理的教案2一、教学目标1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系.二、重点、难点1.重点:掌握勾股定理的逆定理及证明.2.难点:勾股定理的逆定理的证明.3.难点的突破方法:先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.为学生搭好台阶,扫清障碍.⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.三、课堂引入创设情境:⑴怎样判定一个三角形是等腰三角形?⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想.四、例习题分析例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?⑴同旁内角互补
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

数学定理的教案

文档大小:36KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用