您所在位置: 网站首页 / 《解析几何》讲稿.docx / 文档详情
《解析几何》讲稿.docx 立即下载
2025-08-26
约8.8万字
约155页
0
98KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

《解析几何》讲稿.docx

《解析几何》讲稿.docx

预览

免费试读已结束,剩余 150 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《解析几何》讲稿

第一篇:《解析几何》讲稿第一章矢量与坐标教学目的1、理解矢量的有关概念,掌握矢量线性运算的法则及其运算性质;2、理解矢量的乘法运算的意义,熟悉它们的几何性质,并掌握它们的运算规律;3、利用矢量建立坐标系概念,并给出矢量线性运算和乘法运算的坐标表示;4、能熟练地进行矢量的各种运算,并能利用矢量来解决一些几何问题。教学重点矢量的概念和矢量的数性积,矢性积,混合积。教学难点矢量数性积,矢性积与混合积的几何意义。参考文献(1)解析几何(第三版),吕林根许子道等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,2000.08授课课时10§1.1矢量的概念教学目的1、理解矢量的有关概念;2、掌握矢量间的关系。教学重点矢量的两个要素:摸与方向。教学难点矢量的相等参考文献(1)解析几何(第三版),吕林根许子道等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,2000.08授课课时2§1.1矢量的概念一、有关概念1.矢量既有大小又有方向的量叫做矢量,或称为向量,简称矢.而只有大小的量叫做数量,或称为标量.2.矢量的表示用有向线段来表示矢量,有向线段的始点与终点分别叫做矢量的始点与终点,有向线段的方向表示矢量的方向,有向线段的长度代表矢量的大小.用3.矢量的模矢量的大小称为矢量的模,亦称长度.用|二、特殊矢量1.零矢:模为零,方向不定.2.单位矢:模为1,与矢量方向相同.,,„或黑体字a,x,„来记矢量.|,||,||,|a|,|x|,„来表示.三、矢量间的关系1.平行矢:,所在直线平行,记作//.2.相等矢:模相等,方向相同.3.自由矢:始点任意,只由模与方向确定的矢量.4.相反矢:模相等,方向相反.5.共线矢:平行于同一直线的一组矢量.6.共面矢:平行于同一平面的一组矢量.7.固定矢量:在解析几何的大多数问题里,只有矢量的长度和方向发挥主要作用,而与它的起点无关,即为自由矢量.在个别情形下,有时我们只把有同一起点且相等的矢量才看作相等矢量,亦即两矢量完全重合时才看作相等,这样规定的矢量叫做固定矢量.需要注意,在应用科学中起点位置不同,所产生的作用也会不同,如图1-1,同样的力由于作用点M1和M2的不同,效果也会不同.例1.设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:=.当ABCD是空间四边形时,这等式是否也成立?证明:如图1-2,连结AC,则在BAC中,KL向相同;在DAC中,NM且AC.与方AC.与方向相同,从而KL=NM与方向相同,所以=.由于上述证明不受ABCD是平面四边形或空间四边形的影响,即证明过程中并未用到ABCD必须是平面四边形的限制,故等式对空间情形也成立.例2.回答下列问题:(1)若矢量//,//,则是否有//?(2)若矢量,共面,,也共面,则,是否也共面?(3)若矢量,中//,则,是否共面?(4)若矢量,共线,在什么条件下,也共线?解:(1)由//可知,,所在直线相互平行,同理,所在直线相互平行,从而,所在直线相互平行,从而有//;(2),不一定共面.只有当,,,不共面;,五矢量全部在同一平面上时,共面,否则(3)//,二矢量必共面,从而,必共面;(4)只有当ABDC组成平行四边形,即作业题:=时,才共线.1.设点O是正六边形ABCDEF的中心,在矢量、、、、、、、、、和中,哪些矢量是相等的?、2.如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1)、;、(2)、、;(3);(4)、.;(5)矢量的线性运算(§1.2矢量的加法、§1.3矢量的数乘)教学目的1、掌握矢量加法的两个法则、数量与矢量的乘法概念及运算律;2、能用矢量法证明有关几何命题。教学重点矢量加法的平行四边形法则、数量与矢量的乘法概念教学难点运算律的证明、几何命题转化为矢量间的关系参考文献(1)解析几何(第三版),吕林根许子道等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,2000.08授课课时2§1.2矢量的加法一、概念1.两个例子物理学中的力与位移都是矢量.两个不共线的力作用于一点的合力,可用“平行四边形法则”求得,如图1-4,两个力、的合力,就是以、为邻边的平行四边形OACB的对角线矢量.两个位移的合成可以用“三角形法则”求出,如图1-5,连续两次位移位移.2.矢量的加法法则(1)三角形法则设已知矢量、,以空间任意一点O为始点接连作矢量一折线OAB,从折线的端点O到另一端点B的矢量(2)平行四边形法则如果以两个矢量量=+叫做矢量与的和.、=,=得与的结果,相当于=,叫做两矢量与的和,记做=
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

《解析几何》讲稿

文档大小:98KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用