




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一次函数,(省优质课的教案) 第一篇:一次函数,(省优质课的教案)一次函数,(省优质课的教案)篇一:19.2.2一次函数(第2课时)-公开课-优质课(人教版教学设计精品)19.2.2一次函数(第2课时)一、内容和内容解析1.内容一次函数的图象及性质.2.内容解析用描点法画函数图象,通过观察图象研究函数的性质,这是获得函数性质直观认识的基本方法.这一基本方法与针对函数解析式的代数及微分分析方法相结合,构成了研究函数的基本方法.增减性是函数的核心性质,函数的其它性质,如变化率、极值、最值等,都是基于这一核心性质的拓展.描点法是画陌生函数图象的通法,两点法是画一次函数图象的特殊方法,是在确认一次函数图象为一条直线后,根据两点确定一条直线而得到的简约画图方法.由一次函数的图象得到它的性质,需要经过两次概括.首先对一个具体的一次函数的性质概括,这需要观察当自变量的值增大时,函数值是增大还是减小.自变量增大意味着图象上动点的位置从左向右移动,动点的升(降)就是函数值的增大(减小).其次是概括一次函数y=kx+b的增减性与系数k的符号的关系,这需要对不同的k的符号对增减性的影响情况进行归纳.正比例函数是特殊的一次函数,一次函数图象可以看作正比例函数经过平移得到的.这样,一次函数的增减性就与相对应的正比例函数相同.一次函数的性质的核心是其增减性与系数k的符号的关系.在一次函数的图象及其性质研究中,蕴涵了数形结合思想、分类讨论思想和观察、表征、类比、归纳等数学认知活动.因此,本课的教学重点是用数形结合的思想方法,通过画图观察,概括一次函数的性质(函数的增减性与系数k的关系).二、目标和目标解析1.目标(1)会画一次函数的图象.(2)能从图象角度理解正比例函数与一次函数的关系.(3)能根据一次函数的图象和表达式y=kx+b(k≠0)理解k>0和k<0时,图象的变化情况.从而理解一次函数的增减性.篇二:2010年初中数学全国优质课教案教学设计精品004一次函数与一次方程的关系篇三:一次函数教学设计一次函数的图象和性质人教版《义务教育课程标准实验教科书·数学》(八年级上册第十四章14.2.2节第二课时)授课教师:班春虹天津经济技术开发区第一中学指导教师:王连笑原天津市实验中学刘金英天津市中小学教育教学研究室李燕桐天津经济技术开发区第一中学2010年11月第一部分教学设计一、内容和内容解析(一)内容人教版《义务教育课程标准实验教科书·数学》八年级上册“14.2.2一次函数”(第二课时).(二)内容解析函数是数学领域中最重要的内容之一,也是刻画和研究现实世界变化规律的重要模型.它反映了数量之间的对应规律,是研究数量关系的重要工具.函数思想是最重要的思想,正如F.克莱因的一句名言:“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考.”一次函数是中学阶段接触到的最简单、最基本的函数,它在实际生活中有着广泛的应用.一次函数的学习是建立在学习了平面直角坐标系、变量与函数和正比例函数及其图象与性质的基础上的.一次函数的第一课时主要内容是一次函数的有关概念,本节课是一次函数的第二课时,主要研究一次函数图象的形状、画法,并结合图象分析一次函数的性质.它既是正比例函数的图象和性质的拓展,又是继续学习“用函数观点看方程(组)与不等式”的基础.1.关于一次函数的图象学生在学习一次函数的图象之前已经学习了函数的图象和正比例函数的图象,掌握了画函数图象的基本方法——描点法,因此,对于运用列表、描点、连线画出一次函数的近似图象并不生疏,但是对于一次函数的图象为一条直线的理解则是本节课的内容,所以,教学时需要在学生动手画图象的基础上,通过对一次函数与正比例函数解析式的分析比较,使学生从数的角度加深对形的理解.在了解了一次函数的图象是一条直线,以及它和正比例函数图象之间的关系后,一次函数图象的画法可以有两种,一种是平移,另一种是两点法,突出两点法画图时如何选取合适的点.2.关于一次函数的性质对于一次函数的性质主要是研究一次函数y?kx?b(k?0中的k的正负对函数增减性(图象的变)化趋势)的影响,对于这个性质的探究,让学生经历“先特殊化、简单化,再一般化、复杂化”的过程,通过对图象的研究和分析函数自身的性质,深刻领会函数解析式与函数图象之间的联系,渗透的是数形结合的思想.同时结合一次函数y?kx?b(k?0的图象与正比例函数y?kx(k?0图象之间的关系类))比得出一次函数的性质.从数学自身发展过程来看,正是由于变量与函数概念的引入,标志着初等数学向高等数学的迈进,是一种数学思想与观念的融入.无论从一次函数到反比例函数,再到以后的二次函数,甚至高中的其他各类函数,都是函数的某种具体形式,都为进一步深刻领会函数提供了一个平台.因此,后续学习中对反比例函数、二次函数的研究方

小凌****甜蜜
实名认证
内容提供者


最近下载