




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
七年级数学几何证明题(共五篇) 第一篇:七年级数学几何证明题2、如图,从点O引出四条射线OA.OB.OC.OD,且OA⊥OB,OC⊥OD.(1)如果∠BOC=28°,求∠AOC、∠BOD的度数;(2)如果∠BOC=52°,则∠AOC、∠BOD分别是多少度?(3)如果∠AOD=150°,求∠BOC的大小.你发现了什么?说说你的理由.3、看图填空,并在括号内注明说理依据.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?解:∵∠1=35°,∠2=35°(已知)∴∠1=∠2∴∥(又∵AC⊥AE(已知)∴∠EAC=90°∴∠EAB=∠EAC+∠1=__°(等式的性质)同理可得,∠FBD+∠2=_°∴∥())4、已知,如图∠1和∠D互余,CF⊥DF.问AB与CD平行吗?为什么?9、如图,已知直线AB∥CD,直线m与AB、CD相交于点E、F,EG平分∠FEB,∠EFG=50,求∠FEG的度数.°AFBCD11、如图①,AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行。)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°⑴依照上面的解题方法,观察图②,已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.⑵观察图③和④,已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.12、已知:A、B、C三点在同一直线上,点M、N分别是线段AC、BC的中点.(1)如图,点C是线段AB上一点,①填空:当AC=8cm,CB=6cm时,则线段MN的长度为cm;②当AB=acm时,求线段MN的长度,并用一句简洁的话描述你的发现;(2)若C为线段AB延长线上的一点,则第(1)题第②小题中的结论是否仍然成立?请你画出图形,并说明理由.13、分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=∠EGC=90°∴AD∥EG()∴∠1=∠2()=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3()∴AD平分∠BAC()第二篇:七年级下几何证明题(精选)七年级下几何证明题学了三角形的外角吗?(三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于和它不相邻的任何一个内角)角ACD>角BAC>角AFE角ACD+角ACB=180度角BAC+角ABC+角ACB=180度所以角ACD=角BAC+角ABC所以角角ACD>角BAC同理:角BAC>角AFE所以角ACD>角BAC>角AFE解∶﹙1﹚连接AC∴五边形ACDEB的内角和为540°又∵∠ABE+∠BED+∠CDE=360°∴∠A+∠C=180°∴AB∥CD﹙2﹚过点D作AB的垂线DE∵∠CAD=∠BAD,∠C=∠AEDAD为公共边∴Rt△ACD≌Rt△AED∴AC=AE,CD=DE∵∠B=45°∠DEB=90°∴∠EDB=45°∴DE=BEAB=AE+BE=AC+CD﹙3﹚∵腰相等,顶角为120°∴两个底角为30°根据直角三角形中30°的角所对的边为斜边的一半∴腰长=2高=16﹙4﹚根据一条线段垂直平分线上的点到线段两个端点的距离相等∴该交点到三角形三个顶点的距离相等解∶﹙1﹚先连接AC∴五边形ACDEB的内角和为540°∵∠ABE+∠BED+∠CDE=360°∴∠A+∠C=180°∴就证明AB∥CD♂等鴏♀栐薳2010-05-3017:33(1)解:过E作FG∥AB∵FG∥AB∴∠ABE+∠FEB=180°又∵∠ABE+∠CDE+∠BED=360°∴∠FED+∠CDE=180°∴FG∥CD∴AB∥CD(2)解:作DE⊥AB于E∵AD平分∠CAB,CD垂直AC,DE垂直AB∴CD=DE,AC=AE又∵AC=CB,DE=EB,AC⊥CB,DE⊥EB∴∠ABC=∠EDB=45°∴DE=EB∴AB=AE+EB=AC+CD(3)16CM(4)3个顶点如图已知在四边形ABCD中,∠BAD为直角,AB=AD,G为AD上一点,DE⊥BG交BG的延长线于E,DE的延长线与BA的延长线相交于点F。1.求证AG=AF2.若BG=2DE,求∠BDF的度数3.若G为AD上一动点,∠AEB的度数是否变化?若变化,求它的变化范围;若不变,求出它的度数,并说明理由。解:由题意得1)∠BAD=∠DAF=90°∵∠5=∠6(对顶角)∠1=∠2=90°∴∠3=∠4∵AB=AD∴△BAG≌△DAF(ASA)∴AG=AF2)由1)可知B

白真****ng
实名认证
内容提供者


最近下载