




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
七年级证明题 第一篇:七年级证明题七年级证明题如图AD//BC,∠A=∠C。试说明AB//DCps:写过程..∵AD//BC∵∠A=∠ABF(两直线平行,内错角相等)∵∠A=∠C∵∠C=∠ABF∴AB//DC(同位角相等,两直线平行∵AD//BC(已知)∴∠A+∠ABC=180°(两直线平行,同旁内角互补)∵∠A=∠C(已知)∴∠C+∠ABC=180°(等式的性质)∴AB//DC(同旁内角互补,两直线平行))在正方形ABCD中,p(p靠近是D点)CD上的一点,BE⊥Ap于E,DF⊥Ap于F,说明△AFD≌△BEAD--------CA--------B∠BAE与∠DAF互余∠ADF与∠DAF互余所以∠BAE=∠ADF又待证明的两三角形都是Rt三角形,且AB=DA根据角角边定理,两三角形全等∠A=75°第二题是不是有问题啊∠GQD是30°吗应该是∠GQH=30°吧还有不懂怎么算的你追问一下我们QQ聊补充回答:∵GA//ED∴∠EBF=∠FHG=30°(两只线平行,同位角相等)∴∠FBA=∠ABD=(180°-30°)÷2=75°∵∠AHB=∠FHG=30°(对顶角)∴∠a=180°-75°-30°=75°#FormatImgID_0#还有一题等等啊补充回答:∵MN⊥CD∴∠MHD=90°∵∠GQD=130°∴∠GQH=180°-130°=50°∴∠HGQ=180°-90°-50°=40°∵MN⊥AB∴∠AGH=90°∴∠EGA=180°-90°-40°=50°您已经评价过!好:0您已经评价过!不好:0您已经评价过!原创:5您已经评价过!非原创:0第一题的答案:证明:因为这是等宽带所以AG平行DE所以∠EBF=∠GOF=30°(“O”是我加上去的)因为∠EBF+∠FBD=180°所以∠FBD=180°-∠EBF=150°因为∠FBA由∠ABD折叠而成所以∠FBA=∠ABD所以∠FBA=150°/2=75°图为∠AOB和∠GOF为对顶角所以∠AOB=∠GOF=30°所以∠GAB=180°-∠ABF-∠AOB=75°(∠GAB是∠a)第二题的答案:因为∠DQE+∠CQE=180°所以∠CQE=180°-∠DQE=50°图为AB⊥MN,CD⊥MN所以AB平行CD所以∠AGE=∠CQE=50°因为MN垂直AB所以∠AGH=90°所以∠NGF=180°-∠EGA-∠AGH=40°第二篇:七年级下几何证明题(精选)七年级下几何证明题学了三角形的外角吗?(三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于和它不相邻的任何一个内角)角ACD>角BAC>角AFE角ACD+角ACB=180度角BAC+角ABC+角ACB=180度所以角ACD=角BAC+角ABC所以角角ACD>角BAC同理:角BAC>角AFE所以角ACD>角BAC>角AFE解∶﹙1﹚连接AC∴五边形ACDEB的内角和为540°又∵∠ABE+∠BED+∠CDE=360°∴∠A+∠C=180°∴AB∥CD﹙2﹚过点D作AB的垂线DE∵∠CAD=∠BAD,∠C=∠AEDAD为公共边∴Rt△ACD≌Rt△AED∴AC=AE,CD=DE∵∠B=45°∠DEB=90°∴∠EDB=45°∴DE=BEAB=AE+BE=AC+CD﹙3﹚∵腰相等,顶角为120°∴两个底角为30°根据直角三角形中30°的角所对的边为斜边的一半∴腰长=2高=16﹙4﹚根据一条线段垂直平分线上的点到线段两个端点的距离相等∴该交点到三角形三个顶点的距离相等解∶﹙1﹚先连接AC∴五边形ACDEB的内角和为540°∵∠ABE+∠BED+∠CDE=360°∴∠A+∠C=180°∴就证明AB∥CD♂等鴏♀栐薳2010-05-3017:33(1)解:过E作FG∥AB∵FG∥AB∴∠ABE+∠FEB=180°又∵∠ABE+∠CDE+∠BED=360°∴∠FED+∠CDE=180°∴FG∥CD∴AB∥CD(2)解:作DE⊥AB于E∵AD平分∠CAB,CD垂直AC,DE垂直AB∴CD=DE,AC=AE又∵AC=CB,DE=EB,AC⊥CB,DE⊥EB∴∠ABC=∠EDB=45°∴DE=EB∴AB=AE+EB=AC+CD(3)16CM(4)3个顶点如图已知在四边形ABCD中,∠BAD为直角,AB=AD,G为AD上一点,DE⊥BG交BG的延长线于E,DE的延长线与BA的延长线相交于点F。1.求证AG=AF2.若BG=2DE,求∠BDF的度数3.若G为AD上一动点,∠AEB的度数是否变化?若变化,求它的变化范围;若不变,求出它的度数,并说明理由。解:由题意得1)∠BAD=∠DAF=90°∵∠5=∠6(对顶角)∠1=∠2=90°∴∠3=∠4∵AB=AD∴△BAG≌△DAF(ASA)∴AG=AF2)由1)可知BG=DF,∴DF=2DE∴

努力****承悦
实名认证
内容提供者


最近下载