您所在位置: 网站首页 / 中国旅游统计分析.docx / 文档详情
中国旅游统计分析.docx 立即下载
2025-08-26
约3.3万字
约64页
0
53KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

中国旅游统计分析.docx

中国旅游统计分析.docx

预览

免费试读已结束,剩余 59 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

中国旅游统计分析

第一篇:中国旅游统计分析中国各地区旅游企业经济效益评价与统计分析摘要:本文根据2001年《中国旅游统计年鉴》(副本)的有关数据,用因子分析、聚类分析、判别分析对我国大陆各地区的旅游企业经济效益作了定量分析,按加权因子得分进行了排序,给出了一种分类方式,并用典型相关分析对各地区旅游企业经济效益与旅游资源分布关系进行了研究,为各地区旅游业横向比较及健康、快速发展提供一定的科学依据。关键词:旅游;企业效益;综合评价;因子分析;聚类分析;典型相关分析中图分类号:O212.4文献标识码:A旅游业作为我国经济发展的重要组成部分,为国民经济的发展发挥了巨大作用。我国的旅游业虽然起步较晚,但发展势头强劲。国家把旅游业确定为第三产业积极发展的新兴产业序列中的第一位,许多省、自治区、直辖市把旅游业作为地方经济发展的支柱产业加以培育发展。现阶段我国旅游业已形成了政府主导型的产业格局和门类齐全的生产体系,生产规模日益扩大,产业结构日趋完善,成为经济新的增长点之一。它不仅扩大了就业,促进了消费,为国家增创外汇,拉动经济增长,而且推动了基础设施建设的投资,促进了生态的优化和环境保护。由于我国地域辽阔,经济发展不平衡,旅游资源分布有差异,以及历史文化背景、地方政府扶持力度等原因,我国旅游业的发展现已不平衡,地区差距拉大。如何评价旅游企业的经济效益是旅游企业经济活动分析的重要课题,这对于进一步提升旅游产业地位,提高产出水平,使各地区旅游业均衡、健康、科学发展具有重要作用。本文利用统计模型定量分析,客观地对我国各地区(不含港、澳、台地区)旅游企业经济效益进行了综合评价,给出了排序、分类,并对结果做出了合理分析。1.评价指标与方法我国目前考核旅游企业经济效益的主要指标有:固定资产、利润、税金、全员劳动生产率等,这套指标体系比较全面地反映了企业经济效益各个侧面的状况,但各指标间常出现此大彼小、此高彼低的现象。国家旅游局年度旅游企业经营统计报告只是按某项指标分别给出居于前十位的省份,整体看经营情况如何却不甚鲜明,因而综合各指标的相关信息,从中提出尽量少的“主要”评价指标用于实际的客观、公正、全面评价十分必要。本文用因子分析方法给出一种评价方式,只起抛砖引玉的作用,相信更加科学合理的方法使用必将提高国家旅游局统计报告的效用和权威性。本文数据来自国家旅游局出版的2001年《中国旅游统计年鉴》(副本)。选取指标体系如下:x1-固定资产(万元);x2-营业收入(万元);x3-利润(万元);x4-税金(万元);x5-利润率(%);x6-全员劳动生产率(万元/人);x7-人均实现利税(万元/人);x8-人均实现利润(万元/人);x9-人均固定资产原值(万元/人);x10-从业人员(人);x11-企业数。这十一个指标是异量纲的,数值差异大。计算指标的相关系数阵还发现许多指标间高度相关,实际上有的指标可由另一些指标得出,说明指标间信息有重叠,如果简单地用减少指标的方法又势必造成某些重要信息的丢失。因子分析可以有效的解决上述问题,它以最少的信息损失,将原始的众多指标综合成较少的几个因子变量,以之代替原变量进行统计分析。为了确定原指标变量是否适合用因子分析方法,进行巴特莱特球度检验(Bartletttestofsphericity)为高度显著和KMO(Kaiser-Meyer-Olkin)检验,KMO值为0.672,说明适合作因子分析。2.统计分析2.1因子分析与综合排序利用SAS统计分析软件,调用FACTOR过程,用主成分分析法得到因子分析初始解,用方差最大旋转法作因子旋转,计算因子得分,以所选因子变量的方差贡献率为权数,计算综合因子得分,并按综合因子得分排序。输出结果见下表1。表1:相关矩阵特征值表主成分特征值贡献率累积贡献率6.504506944.360257150.59130.59132.144249790.802932410.19490.78631.341317380.800340080.12190.90820.540977310.248470900.04920.95740.292506410.221678580.02660.98400.070827820.005249120.00640.99040.065578710.045528210.00600.99640.020050490.007810790.00180.99820.012239700.006309630.00110.99930.005930070.004114690.00050.99980.001815370.00021.0000由表1可知:只选取前3个主成分,累积方差贡献率已达90.82%,而其余8个主成分的贡献率都不到5%,所以只取前三个主成分作为综合指标即公因子变量可比较全面的反映原有指标
查看更多
白真****ng
实名认证
内容提供者
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

中国旅游统计分析

文档大小:53KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用