您所在位置: 网站首页 / 函数概念的发展和教学研究.docx / 文档详情
函数概念的发展和教学研究.docx 立即下载
2025-08-26
约2.9万字
约48页
0
45KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

函数概念的发展和教学研究.docx

函数概念的发展和教学研究.docx

预览

免费试读已结束,剩余 43 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

函数概念的发展和教学研究

第一篇:函数概念的发展和教学研究函数概念的发展和教学研究(华中师范大学数学与应用数学黄样430079)摘要:数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡。本文回顾了函数概念的历史发展,并且回顾了函数概念不断被精炼、深化、丰富的历史过程,它不仅有助于中学生提高对函数概念来龙去脉认识的清晰度,而且更能帮助中学生领悟数学概念对数学发展、数学学习的巨大作用。关键字:函数;概念;发展函数这样一个重要概念的形成和发展是经过了漫长岁月的。在不同的阶段,从观点上和表示方法也不尽相同。回顾函数概念的定义以及演变历史,对加深函数概念的理解大有裨益。函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。但正是由于函数概念的抽象性与层次性,中学生往往不习惯用集合、对应的观点去解释函数关系,缺乏用函数思想分析问题和解决问题的能力。本文拟通过对函数概念的发展与比较的研究,对函数概念的教学进行一些探索。函数概念的三种定义在当代国内外教学教材中,关于函数概念有三种代表定义。(1)变量说函数概念的形成和发展经历了很长的时期。变量说是函数的原始定义,它把函数定义为:依一定规律依赖于一个变量的另一个变量。虽然这一定义简单粗糙,但人们对它的探索却是最漫长的。函数概念萌芽于17世纪时对方程个数时的不定方程的求解,例如对方程x+y=100写成y=100﹣x,则y值的变化取决于x的赋值,这就产生了变量概念及依存关系。把“函数”一词最早用做数学术语的是莱布尼兹(G.W.Leibnitz)。在他1673年的一部手稿里用“函数”(function)一词来表示任何一个随着曲线上的点变动而变动的量,如切线、法线等的长度及纵坐标。而曲线本身则是由方程给出的。莱布尼兹还引用了“常量”、“变量”和“参变量”。直至1718年,约翰·伯努利给出了“解析的函数概念”:“函数是由任意变数和常数的任意形成所构成的量”,这是函数概念的第一次扩张。而后约翰·伯努利的学生欧拉(LeonardEuler)发展了这种函数“变量说”。1748年,欧拉将“解析表达式”定义为函数,他说:“变量的函数是一个解析表达式,它是由这个变量和一些常量组成以任何方式组成的。”并创用函数符号y=f(x),其中f解释为由变数与常数组成的解析表达式。这个定义是不完善的,它把函数这一广泛的概念与某个解析表达式混在一起,而把图形或其它方式给出的函数排除在外了。因而欧拉(L.Euler)为了适应积分需要,把函数的概念进一步向“图象定义”推进。在1775年由欧拉精确化:如果某些变量以这样一种方式依赖于另一些变量-----即当后面这些变量变化时,前面这些变量也随之而变化,那么前面的变量称为后面变量的函数。他认为,任意画出的曲线表示所确定的x、y间的关系就是函数。并和达朗贝尔(Dalembert)在弦振动的研究中首先采用了函数记号。但这个定义强调“随着变化”而缩小了函数概念的外延。后来,由于积分运算式子以及分段函数等等都不符合一个解析式的定义,1821年,法国数学家柯西(Cauchy)对函数概念进行了扩张,先后两次将函数定义为变量之间的依赖关系:“在某些变量之间存在着一定的关系,当给定其中某一变量时,其它变量的值也随之确定,则称最初给定的变量为自变量,随之确定的量为函数。”此后,1837年,德国数学家狄利克雷(P.G.Dirichlet)提出了函数的定义:对于x的每一个值,y都有一或多个确定的值与之对应,那么y叫做x的函数。几乎同时,黎曼也给出了函数的定义:对于x的每一个值,如果y有完全确定的值与之对应,不论x、y所建立的对应方式如何,y都叫做x的函数。黎曼的定义已十分接近现在许多初中教科书所采用的定义。它出色地避免了函数定义中所有的关于依赖关系的描述,以清晰完美的方式为人们所接受。这个定义也为19世纪数学的发展指明了道路[1]。(2)对应说与关系说“对应说”是函数的近代定义,其内容是这样的:给定两个集合A和B,如果按照某一确定的对应法则f,对于集合A内的每一个元素x有唯一的一个元素y∈B与它相对应,那么f就是确定在集合A上的函数,A称为函数的定义域,f(A)={y︱y=f(x),x∈A}称为函数的值域,显然f(A)包含于B。自17世纪引入函数的“变量说”以来,人们发现它有很大的缺点。首先变量的意义是不清楚的。其次,“变量说”中函数已允许连续或不连续地取值了。但是,x一般能取的值是a≤x≤b,并且x总是被考虑为连续取值。于是人们就想,能否扩大x的取值范围,或干脆取消把变量限制在数中的条件。19世纪,椭圆函数、超椭圆函数和阿贝尔函数的产生,使代数函
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

函数概念的发展和教学研究

文档大小:45KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用