您所在位置: 网站首页 / 勾股定理教案精编.docx / 文档详情
勾股定理教案精编.docx 立即下载
2025-08-26
约1.5万字
约27页
0
27KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

勾股定理教案精编.docx

勾股定理教案精编.docx

预览

免费试读已结束,剩余 22 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

勾股定理教案

第一篇:勾股定理教案一,课题:勾股定理(八年级下册第十八章——勾股定理)二,教学类型:新知课三,教学目的:让学生了解勾股定理的产生及其内容。四,教学方法:讲解法五,教学重难点:如何引入勾股定理,如何让学生理解勾股定理的内容。六,教具:粉笔,直角三角板,画好网格的A4纸,正方形彩纸。七,教学过程:1,引入新课:相传2500年前,大数学家毕达哥拉斯在朋友家做客时发现家里的地板放映了直角三角边的某种数量,请同学们仔细观察书P72的图,看是否能发现途中隐藏的玄机?2,讲解新课:我们能发现,图中,以等腰直角三角形的两直角边为边长的小正方形面积和,等于以斜边为边长的正方形的面积,因此我们大胆提出猜想,等腰直角三角形的三边之间有特殊关系:斜边的平方和等于两直角边的平方和。见书P73图。这即是我们的命题一:如果是角三角形的两直角边长分变为a,b,斜边长为c,那么a^2+b^2=c^2.那么我们如何验证命题的正确性呢?请拿出我们的两张正方形彩纸,按照书上给出的步骤进行折叠,并把中间的小正方形描画出来。我们所折出的四个全等三角形中短边长为a,长直角边长为b,斜边长为c,且斜边长即为新折出的正方形的边长。原来没有折叠前,两张彩纸的面积一共为a^2+b^2,折叠后的面积为c^2,但是折叠前后并没有改变其面积的大小,因此有a^2+b^2=c^2.这样命题就等到了验证。(这种方法是我国古代的数学家赵爽想出来的,同学们是否有其他方法来验证命题的正确性?)命题一就是我们所说的勾股定理。3,小结:勾股定理的内容是什么?验证勾股定理的方法是什么?4,巩固:我们来研究勾股定理在实际中是如何被利用的。有一个门框,宽3米,高4米,请问有个人拿了五米高的薄木板,请问他能否通过此门?若能应如何通过?若不能请给出理由。(能。运用勾股定理,3^2+4^2=5^2,把木板按照门的对角线放置就能经过此门)5,作业:书P781,2,5,8题八,思考:我们知道直角三角形一定满足勾股定理,那么满足勾股定理的三角形一定是直角三角形吗?你是否能找到满足勾股定理但不是直角三角形的例子呢?请同学们回家思考,明天给我答案。第二篇:勾股定理教案勾股定理作者:范丹初中耿占华一、素质教育目标(一)知识教育点1、用验证法发现直角三角形中存在的边的关系。2、掌握定理证明的基本方法。(二)能力训练点观察和分析直角三角形中,两边的变化对第三边的影响,总结出直角三角形各边的基本关系。(三)德育渗透点培养学生掌握由特殊到一般的化归思想,从具体到抽象的思维方法,以及化归的思想,从而达到从感性认识到理性认识的飞跃;又从一般到特殊,从抽象到具体,应用到实践中去。二、教学重点、难点及解决办法1、重点:发现并证明勾股定理。2、难点:图形面积的转化。3、突出重点,突破难点的办法:《几何画板》辅助教学。三、教学手段:利用计算机辅助面积转化的探求。四、课时安排:本课题安排1课时五、教学设想:想培养学生的思维能力,为学生提供一个丰富的思维空间,使学生能够根据“式,数、形”等不同的结构从不同的角度去分析问解决问题六、教学过程(略)第三篇:勾股定理教案勾股定理教学目标1、了解勾股定理的推理过程,掌握勾股定理的内容,会用面积法证明勾股定理;2、从实际问题中抽象出数学模型,利用勾股定理解决,渗透建模思想和数形结合思想;3、通过研究一系列富有探究性的问题,培养在实际生活中发现问题总结规律的意识和能力.知识梳理1.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于_____的平方.222如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a+b=c.(2)勾股定理应用的前提条件是在___三角形中.222222222222(3)勾股定理公式a+b=c的变形有:a=c﹣b,b=c﹣a及c=a+b.2222(4)由于a+b=c>a,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.2.直角三角形的性质(1)有一个角为90°的三角形,叫做直角三角形.(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角___.性质3:在直角三角形中,斜边上的___等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的___;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于___.3.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

勾股定理教案精编

文档大小:27KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用