构造法在解决数学问题中的应用.docx 立即下载
2025-08-27
约1.4万字
约27页
0
27KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

构造法在解决数学问题中的应用.docx

构造法在解决数学问题中的应用.docx

预览

免费试读已结束,剩余 22 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

构造法在解决数学问题中的应用

第一篇:构造法在解决数学问题中的应用构造法在解决数学问题中的应用1220510062吕彬摘要:构造是在数学的学习里是最重要的思想方法之一,它能够简化其运算量,探求最优解法,充分发挥创造性,加强数学与其他学科知识间的联系,从而激发学生学习兴趣,进一步提高学生分析问题和解决问题的学习能力。本文主要探讨构造法在解决数学问题中的基本思想和策略,并且以具体实例探讨构造法在数学解题中的应用,目的是为解决数学问题的学习和研究提供相应参考。关键词:构造法;模型;数学问题;构造思想,简而言之就是指在对问题进行仔细的分析、对其实质进行了解深刻的基础之上,借助逻辑思维推理或长期经验的积累,充分发挥较强的想象力和创造性,把原有问题从原来的模式中转化为更具反映其本质特征的新模式的思想方法。构造法就是构造出运用定理或公式的条件,或者对于所解决的题目赋予几何上的意义,构造是数学运用的基本思想方法。通过认真仔细的观察,将进一步深入的思考,构造解题的模型,因而使问题得到了相应解决。构造的内涵非常丰富,没有完完全全的固定模式套用。它是以现实问题的特殊性和广泛抽象的普遍性为基础。针对具体的数学问题特点进而采取相应的解决方法。在做题时,要擅于将形与数相结合,将式子与函数、图形、方程等建立相关联系,构造出一个新问题形式,架起一个连接结论和条件的桥梁,如函数、图形、模型、方程等,在几种形式之中找出对应关系。进而能把问题给以解决。利用构造法解题,可以使三角、几何、代数等各种知识相互渗透,有利于提高学生基础数学知识的灵活运用,加强学生解决问题与分析问题的能力,大大培养了学生的创新能力、思维能力。很多数学问题用构造法来解决,可以获出简捷、新颖、独特的方法。构造法有许多种,其中重要的有构造图形法、构造数列法、构造方程法、构造方程法、构造反例法等,本文主要通过举例来说明构造法在数学解题中的应用。1、在不等式证明中的应用在初等数学中不等式的证明是一个重点,也是一个难点,证明不等式有很多方法,比如大家都知晓的分析法、综合法、反证法、比较法、参量法、数学归纳法、放缩法、微分法等,在解决不等式证明中,图解法和换元法是常用的方法之一,通过换元,可以将复杂不等式转化成简单不等式,通过构造函数,将不等式的条件化归为形象、直观的关系。在这,我来谈谈在不等式证明中构造法的应用。构造法是根据不等式的条件,构造满足题目条件的函数、图像、方程等,以这些方程、函数为桥梁,从而达到证明的目的。下面我们来看看具体实例的问题:例1、已知:0dc,n0,求证:11nn(1c)(1d)nncd1,对于任意xx0,因为21xn证明:令f(x)(1x)n2)[f(x11nn][f(x)](1x)(1x)0,121nnx2x1nnxx11所以f(x)f(x)n2nn1021nx1x2x1x2所以f(x)在[0,]上单调增加,由0dc知f(c)f(d),即11nn,证毕。(1c)(1d)nncd从此题可充分看出构造法的巧妙运用,大大帮助我们解题的效率,使题目变得简洁明了,下面我们再来看一个不等式的解法。2、在数列问题中的应用在解决一些自然数N或与不等式有关的题目时,根据问题所出的结论及条件的结构,一般情况可通过设想、转换等手段构造出一个与问题有关的数列,然而对解题有很大的帮助。构造法在数列中一般有三种:1、由已知条件直接构造一个或者几个式子,再根据这些式子的相互结合、变化来解决问题;2、把题目中给出式子变形,构造出新的式子来解题。3、由问题的已知式子,重新构造出另一个式子,把两个式子建立关系相加、减、乘、除或者其他结合方式来解答问题;例2、在数列{bn}中,b18,b22且满足bn24bn13bn0,求数列{bn}的通项公式。分析:放眼看本题无从下手,但是要是有心人仔细观察会发现题目中给出的条件经过变形构造出另外一个式子后,本题就会迎刃而解。解:由bn2bn24bn13bn0经过变形后构造出:bn13(bn1bn),又b2b16所以数列{bn1bn}是以6为首项,3为公比的等比数列则bn1bn63n1,即bnbn163n2(n2)再利用构造法会得出:bn(bnbn1)(bn1bn2)...(b2b1)b1(6)(3n11)8113n31本题是类型二的典型题目,通过给出条件进行变形转换构造出另一个式子,进而解题由复杂变简单。构造法在高等数学里是重点、难点,在数列里更是难点、重点,因此掌握好构造法对于解决数列的问题有很大帮助。3、构造反例的应用为了否定一个命题,构造反例是经常用的方法。反例是指用来说明某个命题
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

构造法在解决数学问题中的应用

文档大小:27KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用