浅谈数据挖掘中寻找商机六大难题.docx 立即下载
2025-08-27
约4.8万字
约81页
0
64KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

浅谈数据挖掘中寻找商机六大难题.docx

浅谈数据挖掘中寻找商机六大难题.docx

预览

免费试读已结束,剩余 76 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

浅谈数据挖掘中寻找商机六大难题

第一篇:浅谈数据挖掘中寻找商机六大难题浅谈数据挖掘中寻找商机六大难题发布时间:2011-6-26信息来源:商界评论很多公司都热衷于数据挖掘,期待从中寻找商机与创意,但大多数公司又不能如愿以偿,问题出在哪里呢?大约两个月前,京东的总裁战略助理刘爽邀请我去了一趟京东,和一屋子人做内部交流。其中有BI(商业智能)团队的人,有营销团队的人,也有PM及技术团队的人,还有CTO的李总,原本计划1个半小时的交流最后成了4个小时,现在我把可以公开的内容和大家一起分享,因为这些话题具有一定的代表性。问题一:数据分析请来了数学专家,但是不懂商业,怎么培养他们?亚马逊内部也有很多博士,但是如果这些博士不懂商业的话,很难为电子商务公司所用。我之前对商业也不敏感,这点特别感谢在敦煌网的工作经历,让我有机会在清华大学培训,并且参与公司的决策制定,4年下来商业意识提升了不少。所以,按照我自己的经验,必须让他们慢慢接触公司的实际业务。比如头一个月,让他们在客服部接电话,也比让他们在那里干坐着强。问题二:不同的部门有不同的BI队伍,营销有一个,财务也有一个,这种BI队伍散落在不同部门的安排合适不合适?虽然每个部门都有一个数据团队有利于每个部门了解自身的状况,但是公司也必须有一个核心的、独立的BI队伍。有两个重要原因:首先,BI团队最好与任何其他部门没有利益关系,独立的BI团队更加有利于做公正和独立的分析和研究;其次,数据彼此之间有关系,真正的数据驱动需要把点状的数据连成线或者面。比如这个月的单价为什么变小了?有可能是除了单价比较高的3C产品之外,又主推了价格比较低的生活用品,也有可能是市场部做了低价促销„„这个问题需要找BI观察一下,不只是看一个部门的数据就可以分析出来答案的,需要用线性的数据来看。当然,这还只是最基础的数据分析,如果上升到用数据给公司做战略分析的话,更是要全盘了解财务数据、业务数据和用户行为数据。今天大多数电商公司少了一个数据的架构师,到底需要多少数据,为什么需要这些数据,还没有答案。而且,特别需要强调的是,一个优秀的BI团队善于问一个问题:Isitpossible„„BI团队在发展初期,其他部门让跑什么数据就跑什么数据,你去帮我看一下为什么今天的买家突然增长了?但是如果BI团队只是停留在这个水平,那么它只是一个跑数据的机器,而不是一个驱动公司发展的“参谋”了。到了第二阶段,BI团队就会主动思考了,会问出一些如果这样做会有那样的可能吗?问题三:为什么有时候数据不可靠?许多人只怪数据会骗人,很少人在做数据分析前,认真地问一句:数据是从哪里来的?准确吗?而今造成数据不准确最大的原因是——没有去掉干扰数据和不可靠数据,比如行为数据最大的干扰就是爬虫,第二大干扰就是员工自己点击、对手点击,而第二点很容易被忽视。在用数据前必须做清理工作,不然用这些不可靠的数据来决定网站产品的设计,就会很奇怪。这也是为什么BI队伍要借助技术团队的原因。问题四:必须要用数据收集一切客户信息吗?其实用户比我们想象的愿意告诉我们的信息要多,不一定所有地方都要用数据。一是可以设计流程来采集客户信息,比如客户进来明明可以问是男是女,为什么要用行为数据来看他是男是女呢,数据不能玩得太厉害了。二是电话直接沟通,有时候把八个人分两组直接电话问客户,和分析数据得到的结果差不了多少,这时候数据就不要太强调了。问题五:从抓客户的层面上说,传统行业和电子商务行业有什么差别?互联网很浪费,100个人进来,只有2.5个买单,这还算是不错的网站,多少人认真想过提高转化率?而楼下卖烟的店,有个人连续三天来了第四天没来,老板一定会心里有想法。问题六:最好的买家就是出钱最多的吗?不是。衡量客户价值,除了从购买能力这个维度来看之外,还应该看他在网络中的社会价值,比如有的人虽然购买的总量少,但是来的次数比较多,他在网络中与许多买家有千丝万缕的联系,能够带动许多人过来买东西,那么这个客户就是平台的核心用户了。(文/车品觉)第二篇:数据挖掘心得体会心得体会这次数据挖掘实验结束了,期间我们小组明确分工并积极去完成,虽然有点辛苦,但我感觉充实而有收获感!根据老师给的一些资料,我们决定采用SQLServer2000中的Northwind数据库里的数据作为我们的实验数据。根据表OrderDetails中的数据,我们分别根据ProductID和OrderID字段,并结合我们规定的最小支持度阀值对数据进行筛选。依次筛选出1项频繁集、2项频繁集和3项频繁集,其中还会使用游标的方式来遍历2项集与3项集的候选集,分别选出2项频繁集和3项频繁集。由于数据较多,因此过程比较复杂,要编写很多的查询语句,建立许多数据表,包括临时表。开始不知道则操作,但经过我们各自多次重复的建表与查询,逐渐的理解和有了自己
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

浅谈数据挖掘中寻找商机六大难题

文档大小:64KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用