直线的参数方程教学设计[全文5篇].docx 立即下载
2025-08-28
约1.1万字
约19页
0
21KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

直线的参数方程教学设计[全文5篇].docx

直线的参数方程教学设计[全文5篇].docx

预览

免费试读已结束,剩余 14 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

直线的参数方程教学设计[全文5篇]

第一篇:直线的参数方程教学设计《直线的参数方程》教学设计教学目标:1.联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用.2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想.3.通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度.教学重点:联系数轴、向量等知识,写出直线的参数方程.教学难点:通过向量法,建立参数(数轴上的点坐标)与点在直角坐标系中的坐标之间的联系.教学方式:启发、探究、交流与讨论.教学手段:多媒体课件.教学过程:一、回忆旧知,做好铺垫教师提出问题:1.在平面直角坐标系中,确定一条直线的几何条件是什么?2.根据直线的几何条件,你认为应当怎样选择参数,如何建立直线的参数方程?这些问题先由学生思考,回答,教师补充完善。【设计意图】引导学生从几何条件思考参数的选择,为学生推导直线的参数方程做好准备.二、直线参数方程探究1.问题:数轴是怎样建立的?数轴上点的坐标的几何意义是什么?教师提问后,让学生思考并回答问题.【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备.2.问题:(1)类比数轴概念,平面直角坐标系中的任意一条直线能否定义成数轴?(2)把直线当成数轴后,直线上任意一点就有两种坐标.怎样选取单位长度和方向才有利于建立这两种坐标之间的关系?【设计意图】使学生明确平面直角坐标系中的任意直线都可以在规定了原点、单位长度、正方向后成为数轴,为建立直线参数方程作准备.3.问题(1):当点M在直线L上运动时,点M满足怎样的几何条件?【设计意图】明确参数.问题(2):如何确定直线L的单位方向向量?教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆.为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆.因此在单位圆中来确定直线的单位方向向量.【设计意图】综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思想.4.问题:如何建立直线的参数方程?(得出直线的参数方程)【设计意图】把向量转化为坐标,获得了直线的参数方程,在此基础上分析直线参数方程的特点,体会参数的几何意义.三、例题讲解例1.(题略)先由学生思考并动手解决,教师适时点拨、引导,鼓励一题多解。在学生解决完后,教师投影展示学生的解答过程,予以纠正、完善.然后进行比较:在解决直线上线段长度问题时多了一种解决方法.【设计意图】通过本题训练,使学生进一步体会直线的参数方程,并能利用参数解决有关线段长度问题,培养学生从不同角度分析问题和解决问题能力以及动手能力.探究:先由学生思考,讨论,最后师生共同得到:【设计意图】通过特殊到一般,及时让学生总结有关结论,为进一步应用打下基础,培养归纳、概括能力.四、布置作业,巩固提高1.教材P41—1;第二篇:直线的参数方程教案[推荐]直线的参数方程(一)三动式学案黄建伟教学目标:1.联系向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用.2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、从特殊到一般的推理等数学思想.3.通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度、合作学习的习惯.教学重点:联系向量等知识,写出直线的参数方程.教学难点:通过向量法,建立参数t与点在直角坐标系中的坐标x,y之间的联系.教学方式:启发、探究、交流与讨论.教学手段:多媒体课件.教学过程:一、课前任务驱动1.已知直线l:y3x1的倾斜角为,则tan______sin______;cos_______2.已知直线经过点M0(x0,y0),斜率为k,则直线的方程为__________3.已知向量a(2,3),则a=______向量a的单位向量e=________,设ate,则t=_______.4已知点M0(x0,y0),M(x,y),单位向量e(cos,sin),向量M0Mte,则x_______________y___________5.已知直线l:xy10与抛物线yx2交于A,B两点,求线段AB的长度和点M(1,2)到A,B两点的距离之积.二、课堂师生互动一、探究直线参数方程问题一:经过点M0(x0,y0),倾斜角为2的直线l的普通方程是?请写出来。问题二:已知直线l上一点M0(x0,y0),直线l的倾斜角为,直线上的的动点M(x,y),设
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

直线的参数方程教学设计[全文5篇]

文档大小:21KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用