直线与平面垂直的判定定理练习.docx 立即下载
2025-08-28
约1.1万字
约21页
0
22KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

直线与平面垂直的判定定理练习.docx

直线与平面垂直的判定定理练习.docx

预览

免费试读已结束,剩余 16 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

直线与平面垂直的判定定理练习

第一篇:直线与平面垂直的判定定理练习直线与平面垂直的判定定理1、如果直线ab,且a平面,则b与的位置关系是2、过一点有3、下列说法中正确的有(1)平行于同一条直线的两条直线互相平行;(2)垂直于同一条直线的两条直线互相平行(3)平行于同一个平面的两条直线互相平行;(4)垂直于同一个平面的两条直线互相平行(5)一条直线和一个平面平行,则它和这个平面内的任何直线平行;(6)一条直线和一个平面垂直,则它和这个平面内的任何直线垂直;(7)如果一条直线平行于平面内无数条直线,那么这条直线和这个平面平行;P(8)如果一条直线垂直于平面内无数条直线,那么这条直线和这个平面垂直。4、如图,四边形ABCD是矩形,AC是对角线,PA平面ABCD则图中共有个直角三角形A5、正方体ABCDA1BC11D1中,AC与BD1的位置关系是与棱AB垂直的面有,与对角线AC1垂直的面有B6、如图ABC中,ACB90,直线l过点A且垂直于平面ABCPCD动点Pl,当点P远离点A时,PCB变化情况是7、正方形SG1G2G3中,E,F分别为G1G2,G2G3的中点,D是EF的中点,现在沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3SAlCBG3重合,记为G,则(1)SGEFG所在平面;(2)GDEFG所在平面G1(3)GFSEF所在平面;(4)GDSEF所在平面10、如图,在五面体ABFCDE中,点O是矩形ABCD的对角线的交点,棱EF//BC且FEG2EFBC,求证:FO//平面CDE2FEADOBC11、已知四棱锥PABCD,PD底面ABCD,底面ABCD为正方形,且PDCD,E,F分别为PB,PC的中点,求证:(1)AC平面PBD(2)PAAB(3)PC平面ADFEAPFDEC第二篇:直线与平面平行判定定理说课稿直线与平面平行说课稿一、教材分析本节课是在人教版数学必修二第二章第二节直线与平面平行的判定。主要学习直线和平面平行的判定定理,以及初步应用。它与前面所学习的平面几何中两条直线的位置关系以及立体几何中直线与平面的位置关系等知识都有密切的关系,而其本身就是判断直线与平面平行的的一个重要的方法;同时又是后面将要学习的平面与平面位置关系的基础,又是连接线线平行和面面平行的纽带!二、教学目标考虑到学生的接受能力和课容量以及《课程标准》的要求,本节课只要求学生在线面平行定义的基础上探究线面平行的判定定理并进行定理的初步运用。故而本节课教学目标为:知识方面:通过对图片,实例的观察以及实践操作,初步感知直线与平面平行的判定定理。能力方面:通过直观感知操作确认归纳线面平行的判定定理,并将归纳用客观论证说明,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念情感方面:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣三、教学难点与重点由于学生的抽象概括能力,空间想象力还有待提高,线面平行的定义比较抽象,要让学生体会“直线与平面无公共点”有一定困难,线面平行的判定的发现有一定隐蔽性,所以我确定本节的重点是:通过观察和操作确认直观感知概括出线面平行的判定定理难点是:应用反证法客观证明直观感知及确认定理。四、教学过程(一)、复习空间直线的位置关系及空间直线与平面的位置关系,为课程的进展做好必备知识的准备(二).定理的探求本环节是教学的第一个重点,分四步a创设情境,感知概念用多媒体展示日常生活中的常见线面平行的实例提出思考问题:如何判定一条直线与一个平面平行?b观察归纳,猜想定理将事例转化为具体的直线与平面,通过提问逐渐引导学生思考平外一条直线与平面内的一条直线平行是否可以得到直线与平面平行。教师用准备好的直角梯形演示平面外一条直线与平面内的一条直线平行时,该直线与平面给人平行的印象,引导学生有直观感受猜想出当直线与平面内一条直线平行时,该直线与平面平行。c客观证明,确认定理教师带领学生将猜想出的结果用反证法进行客观的论证说明,确认猜想正确并给出定理的文字描述,及符号描述。这一环节深化猜想,是其具有较强的确定性,使学生经历从实际背景中抽象出几何概念的全过程,从而形成完整和正确的概念,最后通过客观证明,加紧学生对定理形成,这种立足于感性认识的归纳过程,即由特殊到一般,由具体到抽象,既有利于学生对定理本质的理解,又使学生的抽象思维得到发展,培养学生几何直观能力。d质疑反思,深化定理强调定理中的条件以及应注意的问题。判断正误:如果a,b是两条直线,并且a平行于b,那么a平行于经过b的任何平面(突出一条线在面内,一条线在面外)强调深化平面与直线平行的必须条件a在平面内,b在平面外,a平行于b(三)定理初步应用课本例一空间四边形相邻两边中点的连线,平
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

直线与平面垂直的判定定理练习

文档大小:22KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用