您所在位置: 网站首页 / 线性代数心得体会精编.docx / 文档详情
线性代数心得体会精编.docx 立即下载
2025-08-28
约5.4千字
约10页
0
15KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

线性代数心得体会精编.docx

线性代数心得体会精编.docx

预览

免费试读已结束,剩余 5 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

线性代数心得体会

第一篇:线性代数心得体会矩阵——1张神奇的长方形数表关键词:矩阵与线性方程组高阶矩阵简化方法财务数据分析工具在本学期的线性代数课程的第二章中,我接触了矩阵的相关概念,发现其不仅能够在数学中帮助研究线性变换、向量的线性相关性及线性方程的解法,还能为日常许多数据统计与分析中看似杂乱无章毫无关系的数据按一定的规则清晰展现,并能通过矩阵的运算刻画其内在联系,这对于审计专业的我们将来开展财务数据统计与分析能带来巨大的帮助。在运用矩阵解方程组时,可以将线性方程组简化为矩阵形式:AX=B,来进行矩阵计算,这种方法不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,给线性方程组的讨论带来很大的便利。在具体的矩阵运算过程中,我们可以通过等式两边同时左乘−1来求X,这就引出了第二章第三节的逆矩阵概念,逆在以前高中的实数乘法中便起着重要作用,在学习线性代数课程中,逆矩阵也是一个重要概念,且因为两矩阵乘积的定义,我们需要注意所讨论的矩阵是方阵形式,否则就会带来运算上的错误。而对于高阶的复杂矩阵,还可以利用分块矩阵,将大矩阵的运算化成若干小矩阵,间接使高阶矩阵转化成多个低阶矩阵来运算,以及矩阵的初等变换规律对矩阵进行转换:如通过公式(AE)(−1)可以对前面逆矩阵的运算起到简化作用,通过公式(AB)初等行变换初等行变换(−1B)则可以借此求解矩阵方程AX=B。通过一步一步的学习,我慢慢对线性代数矩阵这一章节有了进一步的理解掌握,发现各个章节看似无关的概念,其实最后都可以联系在一起,为求解线性方程组、甚至后面章节的线性变换、线性相关性等都起到极大的铺垫基础作用。谈了这么多矩阵对于求解线性方程组过程中的体会,更吸引我的是矩阵对于数据处理方面的作用,作为审计专业的学生,未来工作中会遇到很多处理产品成本的核算的问题,而通过矩阵这一工具,可以通过特殊的“数型结合”恰当的显示出各种数据间的内在联系,例如:可12以用矩阵(12)来表示一个公司的单位产品成本构成(两列分别代表产品1和产品2,121三行分别代表材料成本、劳动力成本、其他辅助成本),当与产品产量矩阵()211+22相乘时,则可以得出两种材料的总成本矩阵(11+22)将产品总成本的构成以更清晰11+22明了的方式呈现出来,可以为财务数据的处理带来很大的助益。第二篇:线性代数心得体会矩阵——1张神奇的长方形数表关键词:矩阵与线性方程组高阶矩阵简化方法财务数据分析工具在本学期的线性代数课程的第二章中,我接触了矩阵的相关概念,发现其不仅能够在数学中帮助研究线性变换、向量的线性相关性及线性方程的解法,还能为日常许多数据统计与分析中看似杂乱无章毫无关系的数据按一定的规则清晰展现,并能通过矩阵的运算刻画其内在联系,这对于审计专业的我们将来开展财务数据统计与分析能带来巨大的帮助。在运用矩阵解方程组时,可以将线性方程组简化为矩阵形式:AX=B,来进行矩阵计算,这种方法不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,给线性方程组的讨论带来很大的便利。在具体的矩阵运算过程中,我们可以通过等式两边同时左乘−1来求X,这就引出了第二章第三节的逆矩阵概念,逆在以前高中的实数乘法中便起着重要作用,在学习线性代数课程中,逆矩阵也是一个重要概念,且因为两矩阵乘积的定义,我们需要注意所讨论的矩阵是方阵形式,否则就会带来运算上的错误。而对于高阶的复杂矩阵,还可以利用分块矩阵,将大矩阵的运算化成若干小矩阵,间接使高阶矩阵转化成多个低阶矩阵来运算,以及矩阵的初等变换规律对矩阵进行转换:如通过公式(AE)(−1)可以对前面逆矩阵的运算起到简化作用,通过公式(AB)初等行变换初等行变换(−1B)则可以借此求解矩阵方程AX=B。通过一步一步的学习,我慢慢对线性代数矩阵这一章节有了进一步的理解掌握,发现各个章节看似无关的概念,其实最后都可以联系在一起,为求解线性方程组、甚至后面章节的线性变换、线性相关性等都起到极大的铺垫基础作用。谈了这么多矩阵对于求解线性方程组过程中的体会,更吸引我的是矩阵对于数据处理方面的作用,作为审计专业的学生,未来工作中会遇到很多处理产品成本的核算的问题,而通过矩阵这一工具,可以通过特殊的“数型结合”恰当的显示出各种数据间的内在联系,例如:可12以用矩阵(12)来表示一个公司的单位产品成本构成(两列分别代表产品1和产品2,121三行分别代表材料成本、劳动力成本、其他辅助成本),当与产品产量矩阵()211+22相乘时,则可以得出两种材料的总成本矩阵(11+22)将产品总成本的构成以更清晰11+22明了的方式呈现出来,可以为财务数据的处理带来很大的助益。第三篇:线性代数心得体会矩阵——1张神奇的长方形数表关键词:矩阵与线性方程组高阶矩阵简化方法财务数据分析工具在本学期的线性代数课程的第二章中,我
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

线性代数心得体会精编

文档大小:15KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用