您所在位置: 网站首页 / 角平分线教案设计.docx / 文档详情
角平分线教案设计.docx 立即下载
2025-08-28
约1.1万字
约21页
0
21KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

角平分线教案设计.docx

角平分线教案设计.docx

预览

免费试读已结束,剩余 16 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

角平分线教案设计

第一篇:角平分线教案设计1.3角平分线的性质一、教材分析:本节课主要探究角平分线的性质与判定,而角平分线的性质对学生后期的三角形的全等起到很重要的作用,学生可以利用角平分线的性质和判定探索问题中的线段的数量关系与三角形全等的证明,实现承上启下的作用。二、学情分析:学生刚刚经历了三角形的全等证明,对证明线段的长度关系有了探索的方向,本节课主要通过动手实践,摸索角平分线的性质与判定,再利用三角形全等的证明来求证角平分线的性质与判定,进而了解和掌握角平分线的性质与判定。三、教学目标:知识技能:了解角平分线的画法,了解和掌握角平分线的性质,理解角平分线的判定。数学思考:经历角平分线的作法的实践活动,理解角平分线的性质和角平分线的判定。问题解决:作角平分线,运用角平分线的性质与判定解决实际应用中的全等证明。④情感态度:在合作探究中体验数学知识来源于生活,在学习过中中体验成功的乐趣,锻炼克服困难的意志,培养严谨的科学态度。四、教学重点与难点:教学重点:理解如何作角的平分线(尺规作图),角平分线的性质及运用。教学难点:作角平分线中注意为什么要大于线段长的一半,由角平分线的性质得出角平分线的判定。五、课时安排:1课时。六、教学方法:合作探究法、引导法。七、教学过程:(一):交流预习:预习教材P28-29的内容,展示收获。(教师巡视,师友相互交流,将自己的收获与师傅或学友分享)(二)互助探究:探究角平分线的画法。教师用课件展示思考1(教材P48):师友利用预习的知识加以说明,两组师友展示画法并说明:(教师在师傅的讲解时突出强调为什么要大于DE)探究角平分线上的点到角两边的距离的关系。教师展示课件教材思考2(P28)师友互助,展示结果并讲解:(教师补充:这题我们先应确定已知条件是什么,求证是什么。)已知:点C在AOB的角平分线上,,求证:CD=CE.证明:OC平分AOB,DOCEOC,CDOA,CEOB,CDOCEO90,在DOC与EOC中,DOCEOC(已求)CDOCEO(已求)OCOC(公共边)DOCEOC(AAS)CDCE师友共同总结这一结论:角平分线上的点到角的两边的距离相等。此时让师友总结证明几何命题的步骤:1、明确命题中的已知和求证;2、根据题意画出图形,并用数学符号表示已知和求证;3、经过分析,找出由已知推出要证的结论的途径,写出证明过程。探究角平分线的判定。公路铁路教师展示课件教材思考3(P49)师友共同探讨,教师巡视,加以引导。展示师友比较优秀的做法并总结:S角的内部到角的两边的距离相等的点在角的平分线上。教师引导学生找出已知条件和求证,并让师友合作探讨,给出证明。选取一组师友的结果并展示:已知:如图,QDOA,QEOB,点D、E为垂足,QDQE,求证:点Q在AOB的平分线上。证明:QDOA,QEOB(已知)QDOQEO90(垂直的定义)在RtQDO与RtQEO中,QOQO(公共边)QDQE(已知)RtQDORtQEO(HL)QODQOE点Q在AOB的平分线上。教师引导师友总结:在角的内部到角两边相等的点在角的角平分线上。(突出强调数学符号形式)数学符号语言表示为:QDOA,QEOB,QDQE点Q在AOB的平分线上(三)分层提高:教师利用课件展示练习:如图,已知ABC的外角CBD的角平分线和BCE的角平分线相交于点F,求证:点F在DAE的角平分线上。学友在师傅的指导下,师友共同完成本题,教师巡堂,帮助有困难的师友,然后展示较好的作业。师友作业展示如下:证明:过F作FGAE交AE于点G,FHAD交AD于点H,FMBC交BC于点M,F在BCE的平分线上,FGAE,FMBC,FGFM又F在CBD的平分线上,FHAD,FMBC,FMFHFGFH点F在DAE的角平分线上。(四)总结归纳:本节课你有哪些收获?你还有什么困惑?通过本次(五)课的学习,你会勾画知识框图吗?你还想学习什么内容?(师友共同完成,学友回答,师傅可作补充)(六)巩固反馈:(师友合作探讨交流)如图,ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,AC的距离相等。(请两组师友加以证明,完成过程)证明:过点P作PDAB于D,PEDC于E,PFAC于F,BM是ABC的角平分线,点P在BM上PDPE(角平分线上的点到角的两边的距离相等)同理:PEPFPDPEPF即点P到三边AB,BC,AC的距离相等。八、布置作业:教材P30本节同步自编一道证明题,与师傅(或学友)分享九、板书设计:12.3角平分线的性质1、角平分线的画法展示角
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

角平分线教案设计

文档大小:21KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用