您所在位置: 网站首页 / 高中数学教学设计大赛.docx / 文档详情
高中数学教学设计大赛.docx 立即下载
2025-08-28
约7.7万字
约142页
0
99KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

高中数学教学设计大赛.docx

高中数学教学设计大赛.docx

预览

免费试读已结束,剩余 137 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中数学教学设计大赛

第一篇:高中数学教学设计大赛高中数学教学设计大赛获奖作品汇编(上部)目录1、集合与函数概念实习作业„„„„„„„„„„„„„„2、指数函数的图象及其性质„„„„„„„„„„„„„„3、对数的概念„„„„„„„„„„„„„„„„„„„4、对数函数及其性质(1)„„„„„„„„„„„„„„5、对数函数及其性质(2)„„„„„„„„„„„„„„6、函数图象及其应用„„„„„„„„„„„„„„7、方程的根与函数的零点„„„„„„„„„„„„„„8、用二分法求方程的近似解„„„„„„„„„„„„„„9、用二分法求方程的近似解„„„„„„„„„„„„„„10、直线与平面平行的判定„„„„„„„„„„„„„„11、循环结构„„„„„„„„„„„„„„„„„„„12、任意角的三角函数(1)„„„„„„„„„„„„„13、任意角的三角函数(2)„„„„„„„„„„„„„„14、函数yAsin(x)的图象„„„„„„„„„„15、向量的加法及其几何意义„„„„„„„„„„„„„„„16、平面向量数量积的物理背景及其含义(1)„„„„„„17、平面向量数量积的物理背景及其含义(2)„„„„„„„„18、正弦定理(1)„„„„„„„„„„„„„„„„„„„„19、正弦定理(2)„„„„„„„„„„„„„„„„„„„„20、正弦定理(3)„„„„„„„„„„„„„„„„„„„„第二篇:高中数学教学设计高中数学教学设计——函数的奇偶性函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.教学目标1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的.任务分析这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.教学设计一、问题情景1.观察如下两图,思考并讨论以下问题:(1)这两个函数图像有什么共同特征?(2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.2.观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.二、建立模型由上面的分析讨论引导学生建立奇函数、偶函数的定义1.奇、偶函数的定义如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.2.提出问题,组织学生讨论(1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?(f(x)不一定是偶函数)(2)奇、偶函数的图像有什
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

高中数学教学设计大赛

文档大小:99KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用