您所在位置: 网站首页 / 证明三角形重心判定性质.docx / 文档详情
证明三角形重心判定性质.docx 立即下载
2023-03-06
约1.2千字
约3页
0
12KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

证明三角形重心判定性质.docx

证明三角形重心判定性质.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

证明三角形重心判定性质例:已知:△ABC,E、F是AB,AC的中点。EC、FB交于G。求证:EG=1/2CG证明:过E作EH∥BF交AC于H。∵AE=BE,EH//BF∴AH=HF=1/2AF(平行线分线段成比例定理)又∵AF=CF∴HF=1/2CF∴HF:CF=1/2∵EH∥BF∴EG:CG=HF:CF=1/2∴EG=1/2CG方法二连接EF利用三角形相似求证:EG=1/2CG即证明EF=1/2BC利用中位线可证明EF=1/2BC利用中位线可证明EF=1/2BC证明三角形重心判定性质证明方法:在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA'、BOB'、COC'分别为a、b、c边上的中线。根据重心性质知:OA'=1/3AA'OB'=1/3BB'OC'=1/3CC'过O,A分别作a边上高OH',AH可知OH'=1/3AH则,S△BOC=1/2×OH'a=1/2×1/3AHa=1/3S△ABC同理可证S△AOC=1/3S△ABCS△AOB=1/3S△ABC所以,S△BOC=S△AOC=S△AOB在三角形ABC中,向量BO与向量BF共线,故可设BO=xBF根据三角形加法法则:向量AO=AB+BO=a+xBF=a+x(AF-AB)=a+x(b/2-a)=(1-x)a+(x/2)b向量CO与向量CD共线,故可设CO=yCD,根据三角形加法法则:向量AO=AC+CO=b+yCD=b+y(AD-AC)=b+y(a/2-b)=(y/2)a+(1-y)b.所以向量AO=(1-x)a+(x/2)b=(y/2)a+(1-y)b则1-x=y/2,x/2=1-y,解得x=2/3,y=2/3.向量BO=2/3BF,向量CO=2/3CD即BO:OF=CO:OD=2。∴向量AO=(y/2)a+(1-y)b=1/3a+1/3b又因向量AE=AB+BE=a+1/2BC=a+1/2(AC-AB)证明三角形重心判定方法已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点.三角形重心证明:根据燕尾定理,S△AOB=S△AOC,又S△AOB=S△BOC,∴S△AOC=S△BOC,再应用燕尾定理即得AF=BF,命题得证。1、重心到顶点的距离与重心到对边中点的距离之比为2:1.2、重心和三角形3个顶点组成的3个三角形面积相等。3、重心到三角形3个顶点距离的平方和最小。4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标(Z1+Z2+Z3)/35、重心和三角形3个顶点的连线的任意一条连线将三角形面积平分.证明:刚才证明三线交一时已证。6、重心是三角形内到三边距离之积最大的点。证明三角形重心判定性质
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

证明三角形重心判定性质

文档大小:12KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用