高一数学归纳法分析及解题步骤.docx 立即下载
2023-03-06
约5.7千字
约13页
0
18KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

高一数学归纳法分析及解题步骤.docx

高一数学归纳法分析及解题步骤.docx

预览

免费试读已结束,剩余 8 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高一数学归纳法分析及解题步骤《2.3数学归纳法》教学设计青海湟川中学刘岩一、【教材分析】本节课选自《普通高中课程标准实验教科书数学选修2-2(人教A版)》第二章第三节《2.3数学归纳法》。在之前的学习中,我们已经用不完全归纳法得出了许多结论,例如某些数列的通项公式,但它们的正确性还有待证明。因此,数学归纳法的学习是在合情推理的基础上,对归纳出来的与正整数有关的命题进行科学的证明,它将一个无穷的归纳过程转化为有限步骤的演绎过程。通过把猜想和证明结合起来,让学生认识数学的本质,把握数学的思维。本节课是数学归纳法的第一课时,主要让学生了解数学归纳法的原理,并能够用数学归纳法解决一些简单的与正整数有关的问题。二、【学情分析】我校的学生基础较好,思维活跃。学生在学习本节课新知的过程中可能存在两方面的困难:一是从“骨牌游戏原理”启发得到“数学方法”的过程有困难;二是解题中如何正确使用数学归纳法,尤其是第二步中如何使用递推关系,可能出现问题。三、【策略分析】本节课中教师引导学生形成积极主动,勇于探究的学习精神,以及合作探究的学习方式;注重提高学生的数学思维能力;体验从“实际生活—理论—实际应用”的过程;采用“教师引导—学生探索”相结合的教学方法,在教与学的和谐统一中,体现数学的价值,注重信息技术与数学课程的合理整合。四、【教学目标】(1)知识与技能目标:①理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤;②会用数学归纳法证明某些简单的与正整数有关的命题。(2)过程与方法目标:努力创设愉悦的课堂气氛,使学生处于积极思考,大胆质疑的氛围中,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会归纳递推的数学思想。(3)情感态度与价值观目标:通过本节课的教学,使学生领悟数学归纳法的思想,由生活实例,激发学生学习的热情,提高学生学习的兴趣,培养学生大胆猜想,小心求证,以及发现问题、提出问题,解决问题的数学能力。五、【教学重难点】教学重点:借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,能熟练运用它证明一些简单的与正整数n有关的数学命题;教学难点:数学归纳法中递推关系的应用。六、【教学方法与工具】教法指导:本节课采用的教学方法是“启、思、演、练、结”五字教学法,即:以具体的例子引入课题,启发学生想去了解归纳法;通过提出问题、创设情景,引导学生积极思考;借助电脑的动画演示,提高直观性与趣味性,延长学生有意注意的时间;教学中,及时精选一些练习帮助学生巩固与强化知识,而“结”则包含两方面的内容(1)授课中教师的及时小结与点拨(2)听课时学生的自我小结与巩固。学法指导:(1)学习要求:①课前预习教材中有关内容;②听课时积极思考大胆质疑;③课后及时完成课外作业。(2)指导措施:通过设置问题情景,激发学生大胆思考;由具体的事例吸引学生注意,通过直观模型演示,化抽象为具体,突破教学难点;借助电脑声像效果,营造愉悦课堂氛围,提高学习兴趣。教学手段:多媒体辅助课堂教学。一、教材内容解析由于正整数无法穷尽的特点,有些关于正整数n的命题,难以对n进行一一的验证,从而需要寻求一种新的推理方法,以便能通过有限的推理来证明无限的结论.这是数学归纳法产生的根源.数学归纳法是一种证明与正整数n有关的命题的重要方法。它的独到之处便是运用有限个步骤就能证明无限多个对象,而实现这一目的的工具就是递推思想。设p(n)表示与正整数n有关的命题,证明主要有两个步骤:(1)证明p(1)为真;(2)证明若p(k)为真,则p(k+1)为真;有了这两步的保证,就可实现以下的无穷动态的递推过程:P(1)真->P(2)真->P(3)真->…->P(k)真->P(k+1)真->…因此得到对于任何正整数n,命题p(n)都为真.数学归纳法的两个步骤中,第一步是证明的奠基,第二步是递推的依据,即验证由任意一个整数n过渡到下一个整数n+1时命题是否成立.这两个步骤都非常重要,缺一不可.第一步确定了n=1时命题成立,n=1成为后面递推的出发点,没有它递推成了无源之水;第二步确认了一种递推关系,借助它,命题成立的范围就能从1开始,向后面一个数一个数的无限传递到1以后的每一个正整数,从而完成证明.因些递推是实现从有限到无限飞跃的关键,没有它我们就只能停留在对有限情况的把握上.在应用数学归纳法时,第一步中的起点1可以恰当偏移(如取k=n0),那么由第二步,就可证明命题对n=n0以后的每个正整数都成立;而第二步的递推方式也可作灵活的变动,如跳跃式前进等,但必须保证第一步中必须含有实现第二步递推时的基础.数学归纳法名为归纳法,实质上与归纳法毫无逻辑联系.按波利亚的说法“这个名字是随便起的”.[1]归纳法是一种以特殊化和类比为工具的推理方法,是重要的探索发现的手段,是一种似真结构;而数学归纳法是一种严格的
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

高一数学归纳法分析及解题步骤

文档大小:18KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用