您所在位置: 网站首页 / 7.赵角平分线2.doc / 文档详情
7.赵角平分线2.doc 立即下载
2024-06-27
约2.2千字
约2页
0
89KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

7.赵角平分线2.doc

7.赵角平分线2.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

角平分线性质(2)【目标导航】掌握角平分线性质判定的应用【预习引领】1、三角形的三条的交于一点,并且这一点到三条边的距离相等。2、在证明三角形的三条角平分线交于一点时,我们应先假设三角形的条角平分线交于一点,再证明也经过这一点,这样就间接证明了三角形的三条角平分线交于一点。3、如图,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()。A、一处B、二处C、三处D、四处【要点梳理】探究:如图,已知∠AOB,PE⊥OA于E,PF⊥OB于F,若PE=PF,则P点有何位置特征。分析:由于PE⊥OA于E,PE的长表示P到OA的距离,同理由于PF⊥于,PF的长表示P到的距离。又PE=PF,即P到和的距离相等,联想到,角平分线上点到角的两边距离相等,因而想到连结OP,想一想,此时P点在∠AOB的角平分线上吗?(填在或不在),为什么?(请写出证明过程)25例1已知,如图,AB=CD,△PAB和△PCD面积相等,求证:OP平分∠AOC。例2:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等,且P点在∠BAC的角平分线上。分析:由于已知BM平分,从而可知P到边、边距离相等,因而必须作PD⊥AB于D,PE⊥BC于E,得线段=线段。同理:已知平分,从而可知P到边、边距离相等,因此必作PF⊥AC于F。得线段=线段。∴线段=线段=线段。追问:(1)P也在∠BAC的角平分线上吗?。(2)三角形的三条角平分线交于形内点,这点到三边相等。例3:已知如图,BE平分∠ABC,CE平分∠ACD,且交BE于点E。求证:AE平分∠FAC。[思路分析]只需证明E点到∠FAC两边距离相等即可。(如果用定义证,难以凑效)。而已知条件中有角平分线BE、CE,应考虑用角平分线的性质来证E点到∠FAC两边的距离相等。[总结]证明点在角平分线上,关键是要证明这个点到角的两边距离相等,即证明线段相等,常用的方法有:利用全等三角形、角平分线的性质和利用面积相等,但要特别注意的是点到角的两边的距离。例4:三角形三条角平分线交于一点,且这点到三角形三边距离相等。[方法规律]该结论的证明揭示了三线共点的证明。思路:先设其中的两线交于一点,再证明该点在第三线上。例5:某考古队为进行考古研究,寻找一座古城遗迹,根据史料记载,这座古城在古战道与河流之间且到古战道与河流距离相等,在凤凰山附近且距离雁塔有2000,考古队员很快找到了这座古城的的遗址,你能用学过的知识在图中合理标出古城遗址吗?(比例尺为1:10000如图所示)[思路分析]设古战道与河流交于点O,OA表示河流,OB表示古战道,点C表示雁塔,点D表示凤凰山。以尺规作出∠AOB的平分线OP。以点C为圆心,2长为半径作圆探求M点。【课堂操练】1、已知△ABC,在△ABC内求作一点P,使它到△ABC三边的距离相等。2、如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则(1)△ABE≌△ACF。(2)△BDF≌△CDE。(3)D点在∠BAC的平分线上,以上结论正确的是()。A只有(1)B只有(2)C只有(1)(2)D只有(1)(2)(3)26【课后巩固】1、如图,等边三角形的三条角平分线交于点I,点I到三个顶点的距离。2、观察上图,可以发现等边三角形三条角平分线、三条高、三条中线,并且三条角平分线的交点到三边距离与到三顶点的距离之比是。3、已知,如图,在四边形ABCD中,AB=AD,AB⊥BC,AD⊥DC,求证,点C在∠DAB的平分线上。4、如图,PC⊥OA于C,PD⊥OB于D,PC=PD,Q是OP上一点,QE⊥OA于E,QF⊥OB于F,求证:QE=QF。5、已知,如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,ME⊥AD。求证:(1)MB=ME。(2)AM平分∠DAB。6、如图,点P在∠ABC的平分线上,PA⊥AB,PC⊥CB,D为BP上一动点,则AD=CD,∠ADB=∠CDB,为什么?7、已知BP、CP是△ABC的外角平分线,则点P必在∠BAC的平分线上。8、如图,在△ABC中,D是BC边上的中点,DE⊥BC交∠BAC的平分线于点E,EF⊥AB于F,EG⊥AC的延长线于G,则BF=CG,为什么?9、如图,在△ABC中,∠ABC=60°,∠BAC、∠BCA的平分线相交于点O,求证:OE=OF。2710、如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE则∠B与∠ADC互补,为什么?11、如图,AM是△ABC的边BC边上的中线,ME,MF分别平分∠AMB、∠AMC,你能判断BE+CF与EF的大小关系吗?为什么?12、如图,在△ABC中,∠B=90°,AB=7,BC=24,AC=25,△ABC内存在一点P到三边距离
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

7.赵角平分线2

文档大小:89KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用