第5讲 多种函数交叉综合问题(含答案)doc.doc 立即下载
2024-08-16
约3.8千字
约12页
0
412KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

第5讲 多种函数交叉综合问题(含答案)doc.doc

第5讲多种函数交叉综合问题(含答案)doc.doc

预览

免费试读已结束,剩余 7 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开







中考数学重难点专题讲座
第五讲多种函数交叉综合问题

【前言】
初中数学所涉及的函数无非也就一次函数,反比例函数以及二次函数。二次函数基本上只会考和一次函数的综合问题,二次函数与反比例函数基本不会涉及。所以如何掌握好一次函数与反比例函数的综合问题就成为了又一重点。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。


【例1】2010,西城,一模
将直线沿轴向下平移后,得到的直线与轴交于点,与双曲线交于点.
⑴求直线的解析式;
⑵若点的纵标为,求的值(用含有的式子表示).

【思路分析】这种平移一个一次函数与反比例函数交与某一点的题目非常常见,一模中有多套题都是这样考法。题目一般不难,设元以后计算就可以了。本题先设平移后的直线,然后联立即可。比较简单,看看就行.
【解析】将直线沿轴向下平移后经过x轴上点A(),
设直线AB的解析式为.
则.
解得.
∴直线AB的解析式为.

图3
(2)设点的坐标为,
∵直线经过点,
∴.
∴.
∴点的坐标为,
∵点在双曲线上,
∴.
∴.

【例2】2010,丰台,一模
如图,一次函数的图象与反比例函数的图象相交于A、B两点.
(1)求出这两个函数的解析式;
(2)结合函数的图象回答:当自变量x的取值范围满足什么条件时,

【思路分析】第一问直接看图写出A,B点的坐标(-6,-2)(4,3),直接代入反比例函数中求m,建立二元一次方程组求k,b。继而求出解析式。第二问通过图像可以直接得出结论。本题虽然简单,但是事实上却有很多变化。比如不给图像,直接给出解析式求的区间,考生是否依然能反映到用图像来看区间。数形结合是初中数学当中非常重要的一个思想,希望大家要活用这方面的意识去解题。
【解析】
解:(1)由图象知反比例函数的图象经过点B(4,3),
∴.∴m=12.-
∴反比例函数解析式为.
由图象知一次函数的图象经过点A(-6,-2),B(4,3),
∴解得--
∴一次函数解析式为.
(2)当0<x<4或x<-6时,.


【例3】2010,密云,一模
已知:如图,正比例函数的图象与反比例函数的图象交于点

(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?
(3)是反比例函数图象上的一动点,其中,过点作直线轴,交轴于点;过点作直线轴交轴于点,交直线于点.当四边形的面积为6时,请判断线段与的大小关系,并说明理由.

【思路分析】第一问由于给出了一个定点,所以直接代点即可求出表达式。第二问则是利用图像去分析两个函数的大小关系,考生需要对坐标系有直观的认识。第三问略有难度,一方面需要分析给出四边形OADM的面积是何用意,另一方面也要去看BM,DM和图中图形面积有何关系.视野放开就发现四边形其实就是整个矩形减去两个三角形的剩余部分,直接求出矩形面积即可.部分同学会太在意四边形的面积如何求解而没能拉出来看,从而没有想到思路,失分可惜.
【解析】
解:(1)将分别代入中,
得,,
∴,.
∴反比例函数的表达式为:;
正比例函数的表达式为.	
(2)观察图象得,在第一象限内,当时,
反比例函数的值大于正比例函数的值.

(3).
理由:∵,
∴,即.
∵,
∴.
∴.(很巧妙的利用了和的关系求出矩形面积)
∴.
∴.
∴	


【例4】2010,石景山,一模
已知:与两个函数图象交点为,且,是关于的一元二次方程的两个不等实根,其中为非负整数.
(1)求的值;
(2)求的值;
(3)如果与函数和交于两点(点在点的左侧),线段,求的值.
【思路分析】本题看似有一个一元二次方程,但是本质上依然是正反比例函数交点的问题。第一问直接用判别式求出k的范围,加上非负整数这一条件得出k的具体取值。代入方程即可求出m,n,继而求得解析式。注意题中已经给定m<n,否则仍然注意要分类讨论。第三问联立方程代入以后将A,B表示出来,然后利用构建方程即可。
【解析】(1)

∵为非负整数,∴
∵为一元二次方程
∴
(2)把代入方程得,解得
∵
∴
把代入与
可得
(3)把代入与
可得,,由,可得
解得

,经检验为方程的根。
∴
【例5】2010,海淀,一模
已知:如图,一次函数与反比例函数的图象在第一象限的交点为.
(1)求与的值;
(2)设一次函数的图像与轴交于点,连接,求的度数.

【思路分析】如果一道题单纯考正反比例函数是不会太难的,所以在中考中经常会综合一些其他方面的知识点。比如本题求角度就牵扯到了勾股定理和特定角的三角函数方面,需要考生思维转换要迅速。第一问比较简单,不说了。第二问先求出A,B具体点以后本题就变化成了一道三
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

第5讲 多种函数交叉综合问题(含答案)doc

文档大小:412KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用