




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
(精品word)《偏微分方程概述及运用matlab求解偏微分方程常见问题》要点 (精品word)《偏微分方程概述及运用matlab求解偏微分方程常见问题》要点 (精品word)《偏微分方程概述及运用matlab求解偏微分方程常见问题》要点 北京航空航天大学 偏微分方程概述及运用matlab求解微分方程求解常见问题 姓名徐敏 学号57000211 班级380911班 2011年6月 偏微分方程概述及运用matlab求解偏微分方程常见问题 徐敏 摘要偏微分方程简介,matlab偏微分方程工具箱应用简介,用这个工具箱解方程的过程是:确定待解的偏微分方程;确定边界条件;确定方程所在域的几何形状;划分有限元;解方程 关键词MATLAB偏微分方程程序 如果一个微分方程中出现的未知函数只含有一个自变量,这个方程叫做常微分方程,也简称微分方程:如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程. 一,偏微分方程概述 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁. 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助.比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用. 在我国,偏微分方程的研究起步较晚.但解放后,在党和国家的大力号召和积极支持下,我国偏微分方程的研究工作发展比较迅速,涌现出一批在这一领域中做出杰出工作的数学家,如谷超豪院士、李大潜院士等,并在一些研究方向上达到了国际先进水平。但总体来说,偏微分方程的研究队伍的组织和水平、研究工作的广度和深度与世界先进水平相比还有很大的差距.因此,我们必须继续努力,大力加强应用偏微分方程的研究,逐步缩小与世界先进水平的差距 二,偏微分方程的内容 偏微分方程是什么样的?它包括哪些内容?这里我们可从一个例子的研究加以介绍. 弦振动是一种机械运动,当然机械运动的基本定律是质点HYPERLINK”http://baike.baidu。com/view/34946.htm”\t"_blank”力学的F=ma,但是弦并不是质点,所以质点力学的定律并不适用在弦振动的研究上.然而,如果我们把弦细细地分成若干个极小极小的小段,每一小段抽象地看作是一个质点,这样我们就可以应用质点力学的基本定律了。 弦是指又细又长的弹性物质,比如弦乐器所用的弦就是细长的、柔软的、带有弹性的.演奏的时候,弦总是绷紧着具有一种张力,这种张力大于弦的重量几万倍。当演奏的人用薄片拨动或者用弓在弦上拉动,虽然只因其所接触的一段弦振动,但是由于张力的作用,传播到使整个弦振动起来。 用HYPERLINK"http://baike.baidu.com/view/15986.htm"\t"_blank”微分的方法分析可得到弦上一点的位移是这一点所在的位置和时间为自变量的偏微分方程。偏方程又很多种类型,一般包括HYPERLINK"http://baike。baidu.com/view/1403342.htm”\t”_blank”椭圆型偏微分方程、抛物型偏微分方程、HYPERLINK"http://baike.baidu。com/view/273360。htm”\t”_blank”双曲型偏微分方程。上述的例子是弦振动方程,它属于HYPERLINK"http://baike。baidu。com/view/43931.htm"\t”_blank"数学物理方程中的H

17****21
实名认证
内容提供者


最近下载