等差数列知识点总结及练习(学生版).doc 立即下载
2024-12-11
约2.7千字
约5页
0
98KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

等差数列知识点总结及练习(学生版).doc

等差数列知识点总结及练习(学生版).doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开


等差数列知识点总结
一、等差数列知识点回顾与技巧点拨
1.等差数列的定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.
2.等差数列的通项公式
若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d=(n-m)d=p.
3.等差中项
如果三个数x,A,y组成等差数列,那么A叫做x和y的等差中项,如果A是x和y的等差中项,则A=eq\f(x+y,2).
4.等差数列的常用性质
(1)通项公式的推广:an=am+(n-m)d(n,m∈N*).
(2)若{an}为等差数列,且m+n=p+q,
则am+an=ap+aq(m,n,p,q∈N*).
(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.
(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.
(5)S2n-1=(2n-1)an.
(6)若n为偶数,则S偶-S奇=eq\f(nd,2);
若n为奇数,则S奇-S偶=a中(中间项).
5.等差数列的前n项和公式
若已知首项a1和末项an,则Sn=eq\f(na1+an,2),或等差数列{an}的首项是a1,公差是d,则其前n项和公式为Sn=na1+eq\f(nn-1,2)d.
6.等差数列的前n项和公式与函数的关系
Sn=eq\f(d,2)n2+eq\b\lc\(\rc\)(\a\vs4\al\co1(a1-\f(d,2)))n,数列{an}是等差数列的充要条件是Sn=An2+Bn(A,B为常数).
7.最值问题
在等差数列{an}中,a1>0,d<0,则Sn存在最大值,若a1<0,d>0,则Sn存在最小值.
一个推导
利用倒序相加法推导等差数列的前n项和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=eq\f(na1+an,2).
两个技巧
已知三个或四个数组成等差数列的一类问题,要善于设元.
(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.
四种方法
等差数列的判断方法
(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;
(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N*)都成立;
(3)通项公式法:验证an=pn+q;
(4)前n项和公式法:验证Sn=An2+Bn.
注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.



回顾:
1.已知等差数列{an}中,a3=9,a9=3,则公差d的值为()
A.B.1C.D.﹣12.已知数列{an}的通项公式是an=2n+5,则此数列是()
A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列3.在等差数列{an}中,a1=13,a3=12,若an=2,则n等于()
A.23B.24C.25D.264.两个数1与5的等差中项是()
A.1B.3C.2D.5.(2005•黑龙江)如果数列{an}是等差数列,则()
A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5考点1:等差数列的通项与前n项和
题型1:已知等差数列的某些项,求某项
【解题思路】给项求项问题,先考虑利用等差数列的性质,再考虑基本量法
【例1】已知为等差数列,,则

对应练习:1、已知为等差数列,(互不相等),求.



2、已知个数成等差数列,它们的和为,平方和为,求这个数.




题型2:已知前项和及其某项,求项数.
【解题思路】⑴利用等差数列的通项公式求出及,代入可求项数;
⑵利用等差数列的前4项和及后4项和求出,代入可求项数.
【例2】已知为等差数列的前项和,,求

对应练习:3、若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数.




4.已知为等差数列的前项和,,则.
题型3:求等差数列的前n项和
【解题思路】(1)利用求出,把绝对值符号去掉转化为等差数列的求和问题.
(2)含绝对值符号的数列求和问题,要注意分类讨论.
【例3】已知为等差数列的前项和,.
(1);
⑵求;
⑶求.









对应练习:5、已知为等差数列的前项和,,求.







考点2:证明数列是等差数列
【名师指引】判断或证明数列是等差数列的方法有
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

等差数列知识点总结及练习(学生版)

文档大小:98KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用