2019年中考数学真题分类训练——专题二十二:新定义与阅读理解题(含答案).doc 立即下载
2025-03-03
约6.6千字
约16页
0
677KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

2019年中考数学真题分类训练——专题二十二:新定义与阅读理解题(含答案).doc

2019年中考数学真题分类训练——专题二十二:新定义与阅读理解题(含答案).doc

预览

免费试读已结束,剩余 11 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2019年中考数学真题分类训练——专题二十二:新定义与阅读理解题
1.(2019天水)如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;
(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.
试证明:AB2+CD2=AD2+BC2;
(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.

解:(1)四边形ABCD是垂美四边形.理由如下:
∵AB=AD,∴点A在线段BD的垂直平分线上,
∵CB=CD,∴点C在线段BD的垂直平分线上,
∴直线AC是线段BD的垂直平分线,
∴AC⊥BD,即四边形ABCD是垂美四边形;
(2)如图1,
∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,
由勾股定理得,AB2+CD2=AO2+BO2+DO2+CO2=AD2+BC2,
∴AD2+BC2=AB2+CD2;

(3)连接CG、BE,

∵∠CAG=∠BAE=90°,
∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,
在△GAB和△CAE中,QUOTE,
∴△GAB≌△CAE(SAS),
∴∠ABG=∠AEC,又∠AEC+∠AME=90°,
∴∠ABG+∠AME=90°,即CE⊥BG,
∴四边形CGEB是垂美四边形,
由(2)得,CG2+BE2=CB2+GE2,
∵AC=4,AB=5,∴BC=3,CG=4QUOTE,BE=5QUOTE,
∴GE2=CG2+BE2-CB2=73,∴GE=QUOTE.
2.(2019白银)阅读下面的例题及点拨,并解决问题:
例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.
点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.
问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.

解:延长A1B1至E,使EB1=A1B1,连接EM1、EC1,
如图所示:

则EB1=B1C1,∠EB1M1=90°=∠A1B1M1,
∴△EB1C1是等腰直角三角形,
∴∠B1EC1=∠B1C1E=45°,
∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,
∴∠M1C1N1=90°+45°=135°,
∴∠B1C1E+∠M1C1N1=180°,
∴E、C1、N1三点共线,
在△A1B1M1和△EB1M1中,,
∴△A1B1M1≌△EB1M1(SAS),
∴A1M1=EM1,∠1=∠2,
∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,
∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,
∵∠1+∠6=90°,∴∠5+∠6=90°,
∴∠A1M1N1=180°﹣90°=90°.
3.(2019江西)特例感知
(1)如图1,对于抛物线,,,下列结论正确的序号是_________;
①抛物线,,都经过点;
②抛物线,的对称轴由抛物线的对称轴依次向左平移个单位得到;
③抛物线,,与直线的交点中,相邻两点之间的距离相等.
形成概念
(2)把满足(n为正整数)的抛物线称为“系列平移抛物线”.
知识应用
在(2)中,如图2.
①“系列平移抛物线”的顶点依次为,,,…,,用含n的代数式表示顶点的坐标,并写出该顶点纵坐标y与横坐标x之间的关系式;
②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:,,,…,,其横坐标分别为:,,,…,(k为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.
③在②中,直线分别交“系列平移抛物线”于点,,,…,,连接,,判断,是否平行?并说明理由.

解:(1)①当x=0,,所以正确;
②的对称轴分别是直线,,,所以正确;
③与交点(除了点C)横坐标分别为–1,–2,–3,所以距离为1,都相等,正确.
(2)①,所以顶点,
令顶点横坐标,纵坐标,,
即:顶点满足关系式.
②相邻两点之间的距离相等.
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

2019年中考数学真题分类训练——专题二十二:新定义与阅读理解题(含答案)

文档大小:677KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用