




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
圆幂定理及其证明 第一篇:圆幂定理及其证明圆幂定理圆幂的定义:一点P对半径R的圆O的幂定义如下:OPR所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。(1)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。DA22PC如图,AB、CD为圆O的两条任意弦。相交于点P,连接AD、BC,则∠D=∠B,∠A=∠C。所以△APD∽△BPC。所以BAPPDAPBPPCPDPCBP(2)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项。TPAB如图,PT为圆切线,PAB为割线。连接TA,TB,则∠PTA=∠B(弦切角等于同弧圆周角)所以△PTA∽△PBT,所以PTPAPT2PAPBPBPT(3)割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D则有PA·PB=PC·PD。DCPAB这个证明就比较简单了。可以过P做圆的切线,也可以连接CB和AD。证相似。存在:PAPBPCPD进一步升华(推论):过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则PCPD(POR)(POR)PO2R2|PO2R2|(一定要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值)若点P在圆内,类似可得定值为R2PO2|PO2R2|故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝对值。(这就是“圆幂”的由来)第二篇:4个圆幂定理及其证明相交弦定理如图,⊙P中,弦AB,CD相交于点P,则AP·BP=CP·PD证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。∴△PAC∽△PDB,∴PA∶PD=PC∶PB,PA·PB=PC·PD注:其逆定理可作为证明圆的内接三角形的方法.切割线定理如图,ABT是⊙O的一条割线,TC是⊙O的一条切线,切点为则TC²=TA·TB证明:连接AC、BC∵弦切角∠TCB对弧BC,圆周角∠A对弧BC∴由弦切角定理,得∠TCB=∠A又∠ATC=∠BTC∴△ACT∽△CBT∴AT:CT=CT:BT,也就是CT²=AT·BT弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角C,弦切角定理:弦切角等于它所夹的弧所对的圆周角.定义弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.(弦切角就是切线与弦所夹的角)弦切角定理证明证明:设圆心为O,连接OC,OB,OA。过点A作TP的平行线交BC于D,则∠TCB=∠CDA∵∠TCB=90-∠OCD∵∠BOC=180-2∠OCD∴,∠BOC=2∠TCB切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。如图中,切线长AC=AB。∵∠ABO=∠ACO=90°BO=CO=半径AO=AO公共边∴RtΔABO≌RtΔACO(HL)∴AB=AC∠AOB=∠AOC∠OAB=∠OAC割线定理如图,直线ABP和CDT是自点P引的⊙O的两条割线,则PA·PB=PC·PD证明:连接AD、BC∵∠A和∠C都对弧BD∴由圆周角定理,得∠A=∠C又∵∠APD=∠CPB∴△ADP∽△CBP∴AP:CP=DP:BP,也就是AP·BP=CP·DP圆幂定理圆幂定理是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论统一归纳的结果。相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。第三篇:圆的定理及其证明圆周角定理内容:圆周角的度数等于它所对弧上的圆心角度数的一半。证明:情况1:如图1,当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:图1∵OA、OC是半径解:∴OA=OC∴∠BAC=∠ACO(等腰三角形底角相等)∵∠BOC是△AOC的外角∴∠BOC=∠BAC+∠ACO=2∠BAC情况2:如图2,,当圆心O在∠BAC的内部时:连接AO,并延长AO交⊙O于D图2∵OA、OB、OC是半径解:∴OA=OB=OC∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角)∵∠BOD、∠COD分别是△AOB、△AOC的外角∴∠BOD=∠BAD+∠ABO=2

宏硕****mo
实名认证
内容提供者


最近下载