您所在位置: 网站首页 / 欧几里得证明勾股定理简化版.docx / 文档详情
欧几里得证明勾股定理简化版.docx 立即下载
2025-08-27
约6.2千字
约11页
0
17KB
举报 版权申诉
预览加载中,请您耐心等待几秒...

欧几里得证明勾股定理简化版.docx

欧几里得证明勾股定理简化版.docx

预览

免费试读已结束,剩余 6 页请下载文档后查看

10 金币

下载文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

欧几里得证明勾股定理简化版

第一篇:欧几里得证明勾股定理简化版欧几里得的证法设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。在定理的证明中需要如下四个辅助定理:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等SAS。三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个矩形的面积等于其二边长的乘积(据辅助定理3)。证明的思路为:把上方的两个正方形,透过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。其证明如下:1.AL⊥DE,分别与BC和DE直角相交于K、L。2.分别连接CF、AD,形成两个三角形BCF、BDA。3.AB=FB,BC=BD,∠ABC+∠ABF=∠ABF+∠CBD4.因为AB和BD分别等于FB和BC,所以△ABD必须相等于△FBC。5.因为A与K和L在同一直线上,所以四方形BDLK必须二倍面积于△ABD。同理正方形BAGF必须二倍面积于△FBC。6.正方形面积BAGF=AB²,面积ACIH=AC²。7.把这两个结果相加,AB²+AC²=BD×BK+KL×KC8.由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC=BC²9.由于CBDE是个正方形,因此AB²+AC²=BC²。第二篇:勾股定理证明勾股定理的历史及证明勾股定理是“人类最伟大的十个科学发现之一”,是初等几何中的一个基本定理。那么大家知道多少勾股定理的别称呢?我可以告诉大家,有:毕达哥拉斯定理,商高定理,百牛定理,驴桥定理和埃及三角形等。所谓勾股定理,就是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572?~公元前497?)于公元前550年首先发现的。但毕达哥拉斯对勾股定理的证明方法已经失传。著名的希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明。(下图为欧几里得和他的证明图)中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形„矩'得到的一条直角边„勾'等于3,另一条直角边‟股'等于4的时候,那么它的斜边'弦'就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为“勾股定理”是非常恰当的。在稍后一点的《九章算术》一书中(约在公元50至100年间),勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦”。中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图)。中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。【证法】(辛卜松证明)DD图一图二设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形ABCD.把正方形ABCD划分成图一所示的几个部分,则正方形ABCD2aba2b22ab;的面积为把正方形ABCD划分成图二所示的几个部分,则正方形ABCD的面积为=2abc2.∴a2b22ab2abc2,∴a2b2c2.ab241abc22第三篇:证明勾股定理勾股定理的应用一、引言七年级上册的数学有讲到如何精确地画出根号2。老师说,要画一个2×2的,边长都为1的方格。然后在里面再做出一个菱形(表示方格面积的一半)。这个菱形的边长就是根号2。当时有人就埋怨方法的麻烦了,老师就回答用勾股定理会简便许多。还有印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;
查看更多
单篇购买
VIP会员(1亿+VIP文档免费下)

扫码即表示接受《下载须知》

欧几里得证明勾股定理简化版

文档大小:17KB

限时特价:扫码查看

• 请登录后再进行扫码购买
• 使用微信/支付宝扫码注册及付费下载,详阅 用户协议 隐私政策
• 如已在其他页面进行付款,请刷新当前页面重试
• 付费购买成功后,此文档可永久免费下载
全场最划算
12个月
199.0
¥360.0
限时特惠
3个月
69.9
¥90.0
新人专享
1个月
19.9
¥30.0
24个月
398.0
¥720.0
6个月会员
139.9
¥180.0

6亿VIP文档任选,共次下载特权。

已优惠

微信/支付宝扫码完成支付,可开具发票

VIP尽享专属权益

VIP文档免费下载

赠送VIP文档免费下载次数

阅读免打扰

去除文档详情页间广告

专属身份标识

尊贵的VIP专属身份标识

高级客服

一对一高级客服服务

多端互通

电脑端/手机端权益通用