




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第五讲利用导数证明不等式 第一篇:第五讲利用导数证明不等式利用导数证明不等式的两种通法利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。一、函数类不等式证明函数类不等式证明的通法可概括为:证明不等式f(x)g(x)(f(x)g(x))的问题转化为证明f(x)g(x)0(f(x)g(x)0),进而构造辅助函数h(x)f(x)g(x),然后利用导数证明函数h(x)的单调性或证明函数h(x)的最小值(最大值)大于或等于零(小于或等于零)。例1已知x(0,2),求证:sinxxtanx证明这个变式题可采用两种方法:第一种证法:运用本例完全相同的方法证明每个不等式以后再放缩或放大,即证明不等式sinxx以后,根据sinx1sinxx来证明不等式sinx1x;第二种证法:直接构造辅助函数f(x)sinx1x和g(x)xtanx1,其中x(0,然后证明各自的单调性后再放缩或放大(如:f(x)sinx1xf(0)10)例2求证:ln(x1)x2)技巧一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点。二、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。1、利用题目所给函数证明【例1】已知函数f(x)ln(x1)x,求证:当x1时,恒有11ln(x1)xx1如果f(a)是函数f(x)在区间上的最大(小)值,则有f(x)f(a)(或f(x)f(a)),那么要证不等式,只要求函数的最大值不超过0就可得证.2、直接作差构造函数证明123【例2】已知函数f(x)x2lnx.求证:在区间(1,)上,函数f(x)的g(x)x23的图象的下方;首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。3、换元后作差构造函数证明111【例3】证明:对任意的正整数n,不等式ln(1)23都成立.nnn当F(x)在[a,b]上单调递增,则xa时,有F(x)F(a).如果f(a)=(a),要证明当xa时,f(x)(x),那么,只要令F(x)=f(x)-(x),就可以利用F(x)的单调增性来推导.也就是说,在F(x)可导的前提下,只要证明F'(x)0即可.4、从条件特征入手构造函数证明【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证:.af(a)>bf(b)由条件移项后xf(x)f(x),容易想到是一个积的导数,从而可以构造函数F(x)xf(x),求导即可完成证明。若题目中的条件改为xf(x)f(x),则移项后xf(x)f(x)练习21.设a0,f(x)x1ln2x2alnx求证:当x1时,恒有xlnx2alnx12.已知定义在正实数集上的函数f(x)12x2ax,g(x)3a2lnxb,其中a>0,且2b52a3a2lna,求证:f(x)g(x)2(x)3.已知函数f(x)ln1blnalnb1.ax,求证:对任意的正数a、b,恒有1x4.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf(x)f(x)≤0,对任意正数a、b,若a()(A)af(b)≤bf(a)(C)af(a)≤f(b)(B)bf(a)≤af(b)(D)bf(b)≤f(a)二、常数类不等式证明常数类不等式证明的通法可概括为:证明常数类不等式的问题等价转化为证明不等式f(a)f(b)的问题,在根据a,b的不等式关系和函数f(x)的单调性证明不等式。例3已知mn0,a,bR且(a1)(b1)0求证:(anbn)m(ambm)n利用导数证明常数类不等式的关键是经过适当的变形,将不等式证明的问题转化为函数单调性证明问题,其中关键是构造辅助函数,如何构造辅助函数也是这种通法运用的难点和关键所在。构造辅助函数关键在于不等式转化为左右两边是相同结构的式子这样根据“相同结构”可以构造辅助函数。例4已知0练习2.当x1时,求证:2x3证明:abba2,求证:tantan11tantan1已知a,b为实数,并且e3.已知函数f(x)exln(x1)1x0(1)求函数f(x)的最小值;(2)若0yx,求证:exy1ln(x1)ln(y

小宏****aa
实名认证
内容提供者


最近下载