




如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
郑州一中高中数学01正弦定理学案新人教A版必修5 第一篇:郑州一中高中数学01正弦定理学案新人教A版必修5正弦定理余弦定理1.已知:在ABC中,A45,C30,c10,解此三角形。2.已知:在ABC中,A45,AB3.在ABC中,若B30,AB23,AC2,求ABC的面积。4.已知△ABC中,a=4,b=4,∠A=30°,则∠B等于5.在ABC中,若a2bsinA,则B等于8.在ABC中,A60,a3,则06,BC2,解此三角形。abc()sinAsinBsinCA.83239263B.C.D.23339.在△ABC中,∠A,∠B,∠C所对的边长分别为a,b,c.若sinA:sinB:sinC=5:7:8,则a:b:c=010、已知在△ABC中,b=8,c=3,A=60,则a=()A2B4C7D911、在△ABC中,若a=3+1,b=-1,c=,则△ABC的最大角的度数为()A120B90C60000D150012、在△ABC中,a:b:c=1::2,则A:B:C=()A1:2:3B2:3:1C1:3:2D3:1:222213、在不等边△ABC中,a是最大的边,若aA(,)B(,)C(,)D(0,)42322214、在△ABC中,AB=5,BC=6,AC=8,则△ABC的形状是()A锐角三角形B直角三角形C钝角三角形D非钝角三角形15、若三角形的三条边的长分别为4、5、6,则这个三角形的形状是()。A、锐角三角形B、直角三角形C、钝角三角形D、不能确定用心爱心专心-1-第二篇:高中数学《1.1.1正弦定理》教案新人教A版必修51.1.1正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。●教学重点正弦定理的探索和证明及其基本应用。●教学难点已知两边和其中一边的对角解三角形时判断解的个数。教学过程:一、复习准备:1.讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办?2.由已知的边和角求出未知的边和角,称为解三角形.已学习过任意三角形的哪些边角关系?(内角和、大边对大角)是否可以把边、角关系准确量化?→引入课题:正弦定理二、讲授新课:1.教学正弦定理的推导:ab①特殊情况:直角三角形中的正弦定理:sinA=sinB=sinC=1即ccc=abc.sinAsinBsinC②能否推广到斜三角形?(先研究锐角三角形,再探究钝角三角形)当ABC是锐角三角形时,设边AB上的高是CD,根据三角函数的定义,有CDasinBbsinA,则abac.同理,sinAsinBsinAsinC121212③*其它证法:证明一:(等积法)在任意△ABC当中S△ABC=absinCacsinBbcsinA.两边同除以abc即得:12cab==.sinAsinBsinCaaCD2R,sinAsinDCabAOBD证明二:(外接圆法)如图所示,∠A=∠D,∴ccb同理=2R,=2R.sinCsinB证明三;过点A作单位向量jAC,C由向量的加法可得ABACCB则jABj(ACCB)AB∴jABjACjCBjABcos900A0jCBcos900Cac∴csinAasinC,即sinAsinCbc同理,过点C作jBC,可得sinBsinCa从而sinAsinBsinC类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)④正弦定理内容:bccab===2RsinAsinBsinC简单变形;基本应用:已知三角形的任意两角及其一边可以求其他边;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值.2.教学例题:①例1:在ABC中,已知A450,B600,a=10cm,解三角形.②例2:ABC中,c6,A450,a2,求b和B,C.讨论:已知两边和其中一边的对角解三角形时,如何判断解的数量?思考后见(P8-P9)3.小结:正弦定理的探索过程;正弦定理的两类应用;已知两边及一边对角的讨论.第三篇:高中数学必修5第一章正弦定理1.1.1正弦定

春岚****23
实名认证
内容提供者


最近下载